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Dependence on REM Sleep of Overnight 
Improvement of a Perceptual Skill 

Avi Karni,* David Tanne, Barton S. Rubenstein, 
Jean J. M. Askenasy; Dov Sagi 

Several paradigms of perceptual learning suggest that practice can trigger long-term, expe- 
rience-dependent changes in the adult visual system of humans. As shown here, performance 
of a basic visual discrimination task improved after a normal night's sleep. Selective disruption 
of rapid eye movement (REM) sleep resulted in no performance gain during acomparable sleep 
interval, althoogh non-REM slow-wave sleep disruption did not affect improvement. On the 
other hand, deprivation of REM sleep had no detrimental effects on the performance of a similar, 
but previously learned, task. These results indicate that a process of human memory consol- 
idation, active during sleep, is strongly dependent on REM sleep. 

Perceptual learning-the improvement of 
perceptual skills through practice-is a type 
of human learning that may serve as a 
paradigm for the acquisition and retention 
of procedural knowledge, "habits," or "how 
to" memories ( I ) .  Recent results suggest 
that when observers practice a simple tex- 
ture discrimination task the large and con- 
sistent improvements that occur over the 
course of sev'eral consecutive dailv sessions 

are subserved by discrete changes depen- 
dent on retinal input and within an early 
stage in the stream of visual processing (2). 
Psychophysical data implicate neuronal 
mechanisms of figure-ground segmentation 
at a stage in the processing pathway as early 
as the primary visual cortex in mediating 
(by becoming more efficient and fasted the 
learning of this basic visual skill (2, 3). 
These results, as well as results from several 
other perceptual learning paradigms (4), 
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mechanisms active during normal sleep. Be- 
cause normal sleep (unlike the waking state) 
is parsed into several discrete stages, each with 
unique neurochemical and electrophysiologi- 
cal characteristics (a, the functional contri- 
butions of these brain states to the acquisition 
of procedural knowledge could be determined. 

Six young adults (three females and 
three males, 17 to 22 years old) with nor- 
mal or corrected to normal vision and no 
history of neurological or chronic illness 
took part in these experiments. Their task 
was to identify the shape of a small target 
texture composed of three diagonal line 
elements that differed only in orientation 
from a background texture of otherwise 
identical elements (Fig. 1A). Psychophysi- 
cal measurements were made both before 
(initial training session) and after an inter- 
val that included either normal sleep or 
sleep disrupted at a specific sleep stage. An 
important property of our paradigm, a spec- 
ificity of the learning for visual field loca- 
tion and background element orientation 
( 2 ) ,  enabled us to design within-subject 
comparisons across different sleep condi- 
tions, as well as to assess the differential 
effects of sleep-stage deprivation on perfor- 
mance on a novel stimulus configuration 
(learning) compared to that on a well- 
practiced one (control). The latter provid- 
ed an independent measurement of visual 
discrimination performance to control for 
factors such as diurnal variation, stress, and 
fatigue (8), which would presumably affect 
performance on a previously learned, as 
well as on a new, configuration. 

The initial night of each study phase was 
spent at the sleep laboratory with no re- 
cording or interference (night 1). This was 
followed by two consecutive nights of base- 
line recording during normal sleep (nights 2 
and 3) and then by either one or two 
consecutive nights of deprivation of select- 
ed sleep stages when either rapid eye move- 
ment (REM) or slow wave (SW) sleep 
(stages 3 and 4) was systematically disrupt- 
ed (night 4, or nights 4 and 5 of the study). 
These in turn were followed by one or two 
nights of recovery (rebound). Figure 1C 
depicts the course of one study phase during 
which REM sleep was disrupted. This was 
repeated after an interval of at least 1 week 
(mean = 6 weeks), and the complementary 
target sleep stage was disrupted. Selective 
deprivation of selected sleep stages was 
effected by forced arousal (through the ring- 
ing of an electric bell) after an epoch of the 

randomly from trial to trial but was , C 
always within a specific display 2100 
quadrant and at 2.5" to 5" eccen- 2 
tricity from the center of the display. $ 80 
(B) Mask patterns made of random- 

60 ly oriented V-shaped micropat- r, 
terns, with a superimposed T and L 
micropattern in the center as the 
fixation letter's mask (24). (C) The 
sequence of events within a study Time (hours) 
phase (pilot study). Standard poly- 
somnographic tracings of two-channel electroencephalograms [electrodes at T3-A2 and T4-A1 
(10-20 international system)], three-channel electrooculogram monitoring, and electromyograms 
(surface electrodes under the chin) were recorded on four to six consecutive nights. Shading 
represents periods of sleep. Psychophysical testing (practice) sessions were administered twice 
each day at 9 to 10 p.m. and 7 to 8 a.m. (vertical lines). Representative data from a single participant 
are shown. Each data point corresponds to the threshold SOA (80% correct discrimination) 
interpolated from the psychometric curve for the corresponding session. Performance on several 
stimulus configurations was measured within each session. Filled triangles, learning across a 
normal night's sleep and during the following day (target in lower right field); filled squares, 
performance in a new visual quadrant, before and after an interval of REM-disrupted sleep and 
across the following day and night (target in lower left field); filled circles, performance across an 
interval of recovery (rebound) sleep (target in upper left field); empty circles, performance on a 
control, previously well trained, stimulus configuration (target in lower right field, but the orientation 
of the background elements was flipped to vertical). 

relevant sleep stage was recorded. Although 
this procedure allowed adherence to sleep 
stage scoring criteria (9), several epochs of 
the target sleep stage were of necessity 
included. Sleep stage scoring was done in 
real time. The recordings were later res- 
cored independently. Two observers com- 
pleted just one phase of the study (NK, 
REM sleep deprivation, and IN, SW sleep 
deprivation). 

Both REM and SW s l e e ~  deurivation . . 
required 20 to 60 arousals and awakenings, 
with test participants repeatedly reverting 
to the disrupted stage (Fig. 2). However, 
deprivation was quite effective, with REM 
(a total of seven nights) and SW (a total of 
six nights) sleep decreasing to 5.7 r 1.6% 
(mean ? SD) and 8.1 -t 3.1% of total sleep 
time (corresponding to 19 r 6 min in REM 
s l e e ~  and 30 r 12 min in SW sleea) in the . , 
respective deprivation conditions. The dif- 
ference between time suent in the two 
target stag'es during the respective depriva- 
tion nights was not significant (t test, P = 
0.16). The mean length of uninterrupted 
REM or SW sleep was 30 s (a single epoch). 
Also, the difference between time spent in 
the awake state in each deprivation condi- 
tion was not statistically significant (t test, 
P = 0.27), and the numbers of arousals and 
awakenings during the REM and the SW 
sleep deprivations were comparable (t test, 
P = 0.34) (10). 

Learning, however, was found to be 
strongly dependent on the type of sleep 
(Fig. 3). Improvement occurred during nor- 
mal sleep, with a performance gain of 23 + 
4 ms (mean + SD) [with thresholds de- 
creasing from 97 r 18 ms to 74 + 16 ms 
(paired t test, P < 0.001)], but no improve- 
ment occurred during a comparable interval 
with REM-disrupted sleep [performance 
gain of 0 + 6 ms (mean r SD), with 
thresholds changing from 85 + 13 ms to 85 
+ 18 ms (paired t test, P = 0.42)] (1 1). At 
the same time, performance on a previously 
learned stimulus configuration was unaffect- 
ed by REM sleep deprivation. In contrast, 
significant improvements occurred for all 
observers after an interval of SW-deprived 
sleep [performance gain of 19 -t 4 ms (mean 
+ SD), with thresholds decreasing from 84 
r 13 ms to 66 + 12 ms (paired t test, P < 
0.001)]. Perceptual learning during the 
REM sleep deprivation condition compared 
to the gain during SW sleep- deprivation 
was significantly less [F(1,12) = 37.009, P 
< 0.0011. On the other hand, compared to 
the REM sleep deprivation condition there 
was a small but significant detrimental ef- 
fect of SW sleep deprivation on the already 
learned (control) task [F(1,12) = 17.896, P 
= 0.0011. This dissociation suggests that 
REM deprivation affected the consolidation 
of the recent perceptual experience, but not 
perceptual performance by itself, making it 
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Fig. 2. Percent of total sleep time Normal REM dep. SW dep. 
(TS time) spent in the various sleep 
stages during normal, REM depri- 
vation, and SW deprivation sleep 
intervals. The total time in bed (poly- 
somnographic recording time) was 
415 2 29 min (mean ? SD, 38 
nights) for the six test participants 
shown. S l ,  sleep stage 1 ; 52, sleep 
stage 2; SW, sleep stages 3 and 4; 
% in W, percent of time in bed 
spent in the awake state; No. of W, 
number of forced arousals and 
awakenings during the sleep inter- 
val; >5 min, number of episodes of 
more than 5 min spent in the awake 
state. No participants had more 
than 1.5 min in SW stage 4 sleep 
during the SW deprivation phase. 
Two ~artici~ants (IA and NKI un- 
derwent twb consecutive nights of 
disruption of specific sleep stages (nights 4 and 5) at one or both experimental phases. 

I Normal Sleep REM-deprived SW-deprived 1 

5 AN IA A IN NK TC TR AN IA A P .  NKNKTC TR AN A A IN TC TR 
n 

10 B 

Fig. 3. Performance gain (in terms of threshold 
SOA) across the sleep intervals. (A) Perfor- 
mance gains on a novel stimulus configuration, 
first presented on the evening session before 
the sleep interval. (B) Performance on a previ- 
ously well-practiced stimulus configuration 
(control task). Participant IA was tested during 
the first night of the REM deprivation phase on 
two novel stimulus configurations (that is, two 
independent measurements). 

less likely t h a ~  the effects we observed were 
nonspecific consequences of disturbed sleep. 

Though it has long been hypothesized 
that memory-related processing, specifically 
the consolidation of long-term memory, 
may occur during REM sleep, early experi- 
ments designed to demonstrate this for hu- 
man learning have provided equivocal re- 
sults. Supporting evidence has come mainly 
from the work of Empson and colleagues 
(12). Others, however, have found no ben- 
eficial mnemonic effects related to REM 
sleep (13) [for recent reviews, see (14, 15)]. 
One reason for these conflicting results may 
have been the choice of learning paradigm. 
Previous studies were concerned with the 
effects of different sleep stages on the reten- 

tion of material memorized before sleep 
(that is, the differential effects of selectively 
disrupted deep on the rate of forgetting). 
Here, we examined how the evolving, 
time-dependent learning (that is, improve- 
ment, not loss) of a simple skill proceeds 
across both normal and deprived sleep. 
Thus, two factors may be critical for our 
results: (i) the fact that a nondeclarative 
memory system was probed [though it has 
been suggested that REM sleep may be 
important 'for the post-sleep recall of se- 
mantically well-integrated materials (12, 
14, 15)] and (ii) the time course of percep- 
tual learning-the finding that people per- 
form much better on a later session than 
during, or even up to several hours after, 
the initial one-have provided a more di- 
rect measure of the consolidation process. 

Our findings suggest that a mnemonic 
process occurs during normal sleep in the 
adult brain and that this process is critically 
dependent on the integrity of REM sleep 
(16). These results are consistent with several 
paradigms of animal learning in which post- 
learning REM sleep deprivation has impaired 
the acquisition and long-term retention of 
both perceptual and motor "habits" (14, 17). 
Two lines of evidence converge to suggest 
constraints on possible neuronal substrates 
that may underlie the learning of perceptual 
skills during sleep. (i) REM sleep has been 
shown to be strongly related to cholinergic 
activity (18). Cholinergic stimulation of the 
brainstem can elicit a state that is behaviorally 
and polygraphically indistinguishable from 
physiological REM sleep. Furthermore, de- 
synchronized electroencephalogram activity 
(REM sleep as well as the waking state) is 
correlated with increased amounts of acetyl- 
choline (ACh) in the neocortex, whereas 
REM deprivation is related to a reduction in 
the amount of ACh (1 9). (ii) Recent studies 
have demonstrated that a cholinergic input is 

a necessary requirement for the evolution of 
experience-dependent plasticity within the 
adult sensory cortex (20). Thus, a strong 
cholinergic input may be a critical factor for 
processes underlying the consolidation of 
some types of memory. As texture discrimina- 
tion learning is determined by the specific 
retinal input presented during the pre-sleep 
practice session, the role of REM sleep may 
reside in providing a critical milieu (21) for 
the transformation of the activity-dependent 
neural change, presumably initiated during 
the pre-sleep session, into a more efficient and 
stable (consolidated) modification. A possible 
mechanism for such a process at the cellular 
level, suggested by Bear and Singer (22), may 
be for example the ACh-dependent phos- 
phorylation of proteins involved in the long- 
term, structural modification of synaptic 
transmission. 

We have ureviouslv shown that consol- 
idation occurs during the waking state (6). 
Though parsimony would suggest a com- 
mon process at the cellular level, the ques- 
tion whether the mnemonic process of 
REM sleep is qualitatively different from 
the waking state consolidation process re- 
mains open. Also open for empirical deter- 
mination is the intriguing suggestion, raised 
by Smith and Butler, of specific, spaced 
REM "windows" occurring after the train- 
ing session, when consolidation processes 
are presumably active (23). Finally, assum- 
ine that a limited reuertoire of neuronal 
u 

mechanisms underlies memory consolida- 
tion throuehout the mammalian cortex. we - 
conjecture that our results may be general- 
ized to other types of human skill learning 
(for example, motor skill learning) and 
perhaps to the formation of some types of 
long-term association memory. 
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which a threshold SOA for 80% correct discrim- 
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Neutrophil and B Cell Expansion in Mice that 
Lack the Murine IL-8 Receptor Homolog 

Grace Cacatano, James Lee, Kristine Kikly, Ann M. Ryan, 
Sharon Pitts-Meek, Bruce Hultgren, William I. Wood, 

Mark W. Moore* 

Interleukin-8 (IL-8) is a proinflammatory cytokine that specifically attracts and activates 
human neutrophils. A murine gene with a high degree of homology to the two known human 
IL-8 receptors was cloned and then deleted from the mouse genome by homologous 
recombination in embryonic stem (ES) cells. These mice, although outwardly healthy, had 
lymphadenopathy, resulting from an increase in B cells, and splenomegaly, resulting from 
an increase in metamyelocytes, band, and mature neutrophils. Thus, this receptor may 
participate in the expansion and development of neutrophils and B cells. This receptor was 
the major mediator of neutrophil migration to sites of inflammation and may provide a 
potential therapeutic target in inflammatory disease. 

IL-8 is a member of a family of ~roinflam- , - 
matory c~tokines that are related by a 
C-X-C motif, where X is any amino acid 
between two cysteines. IL-8 is a major 
factor in acute inflammation, being respon- 
sible for th? activation of neutrophils and 
their chemotaxis to the site of acute injury 
(1, 2). Neutrophils destroy bacteria by 
phagocytosis and the release of superoxides 
and peroxides, providing the first line of 
defense in fighting infection; the response is 
rapid and is neither acquired nor antigen 
specific (3). Many cells produce IL-8 in 
vitro. and it has been im~licated in neutro- 
phi1 migration and, to a lesser extent, 
T-cell migration, to sites of IL-8 injection 
(4). Neither mouse nor rat IL-8 has been 
identified (5), but antibodies (Ab) to hu- 
man IL-8 inhibit lung inflammation in rats 
(6), which suggests the presence of a similar 
molecule in rodents. 

Two high-affinity human IL-8 receptors 
havepbeen cloned and characterized (7-9). 
These receptors share 77% amino acid se- 
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quence identity and are members of the 
superfamily of seven transmembrane do- 
main receptors that are coupled to GTP- 
binding proteins. We have cloned a murine 
homolog of the human IL-8 receptor by 
screening a mouse genomic library at re- 
duced stringency with complementary 
DNA (cDNA) probes from both human 
IL-8 receptors (7, 8). DNA sequencing 
shows that the mouse receptor is encoded 
by a single exon (as are the two human 
receptors) containing a 350-amino acid 
open reading frame with 68% and 71% 
amino acid identity with human IL-8 recep- 
tors A and B (10). Using several different 
restriction enzymes and genomic DNA 
blots hybridized under low-stringency con- 
ditions, we found a single cross-hybridizing 
band (lo),  suggesting that unlike the hu- 
man genome, the murine genome ~ontains 
a single gene for the putative IL-8 receptor. 
We refer to this gene as the murine IL-8 
receptor homolog (mIL-8Rh). 

To determine the function of this recep- 
tor in inflammation, we used homologous 
recombination in ES cells to generate a 
mouse strain lacking this gene. We con- 
structed a gene-targeting vector by deleting 
the single exon containing the open read- 
ing frame of the mIL-8Rh and replacing it 
with the neomycin resistance gene (neo). 
This ensures the complete elimination of 
the gene after homologous recombination 
(Fig. 1A). Of 814 individual ES clones 
screened by genomic blot hybridization, 7 




