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Fullerenes in the 1.85-Billion-Year-Old 
Sudbury Impact Structure 

Luann Becker,* Jeffrey L. Bada, Randall E. Winans, 
Jerry E. Hunt, Ted E. Bunch, Bevan M. French 

Fullerenes (C,, and C,,) have been identified by laser desorption, laser desorption post-
ionization, and high-resolution electron-impact mass spectrometry in shock-produced 
breccias (Onaping Formation)of the Sudbury impact structure in Ontario, Canada. The C,, 
isotope is present at a level of afew parts per million. The fullerenes were likely synthesized 
within the impact plume from the carbon contained in the bolide. The oxidation of the 
fullerenes during the 1.85 billion years of exposure was apparently prevented by the 
presence of sulfur in the form of sulfide-silicate complexes associated with the fullerenes. 

T h e  discovery and synthesis of fullerenes 
(I) ,  and their unusual stability against pho-
todissociation and thermal degradation (2), 
soon led to the hypothesis that fullerenes 
may be ubiquitous and abundant in the 
universe, particularly in the outflows of 
carbon stars (3). Fullerene molecules (4), 
or perhaps their hydrogenated counterparts 
(fulleranes) (5 ) ,  have been suggested as 
carriers of visible diffuse interstellar bands, 
although so far spectroscopic searches for 
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fullerenes and fulleranes in space have led 
to negative results. Fullerenes have been 
reported in impact residues in a small crater 
on NASA's Long Duration Exposure Facil-
ity (6). Several studies have investigated 
fullerenes in meteorites (7), but so far none 
have been detected (8). On the Earth, 
natural fullerenes have been identified in 
fulgurite (9), a glassy rock that forms where 
lightning hits the ground, and shungite 
(10), a highly metamorphosed carbon-rich 
rock within Precambrian sediments. Pre-
liminary results also suggest that trace quan-
tities of fullerenes may be present in sedi-
mentary deposits associated with the Creta-
ceous-Tertiary impact event (1I) ,  possibly 
produced during global conflagnation. 
Based on these reported terrestrial occur-
rences, it would appear that fullerenes are 
not a ubiquitous form of carbon on Earth. 

Because fullerenes form under highly 

energetic conditions and at intense temper-
atures and pressures, we decided to investi-
gate meteorite impact deposits on Earth for 
the presence of natural fullerenes. We re-
port here the discovery of fullerenes (C,, 
and C7,) in a unit of shock-produced im-
pact breccias (Onaping Formation) from 
the Sudbury impact structure in Ontario, 
Canada. The fullerenes were identified in 
separate samples by laser desorption and 
laser desorption post-ionization time-of-
flight (TOF) methods and by high-resolu-
tion electron-impact mass spectrometry 
(EIMS). 

The Sudbury structure (12) is an ellipti-
cal basin 60 km lone and 27 km wide.-
elongated in an east-northeast direction. 
Ore deposits occur around the margins of 
the basin and in radtal dykes emplaced into 
older rock. The outer margin of the basin is 
outlined by the Sudbury Nickel Irruptive, 
an igneous body that directly overlies de-
posits of copper-nickel sulfides. To the 
north and west, the structure is underlain 
by older Archean granitic and migmatitic 
rocks of the Superior Province, while to the 
south and east the rocks are predominately 
Proterozoic metasedimentary and metavol-
canic rocks of the Huronian Supergroup 
and felsic plutonic rocks of similar age (12). 
Samarium-neodymium isotopic data on 
whole rocks and minerals and uranium-lead 
studies of zircons within the Sudbury com-
plex indicate a formation age of -1850 
million years ago (Ma) (13). The proposal 
that the Sudburv structure was ~roducedbv 
a large meteorite impact is suppbrted by the 
identification of shatter cones (distinctive 
conical fractures that are extensively devel-
oped in the target rocks), a variety of 
shock-induced petrographic features in 
basement rocks and in the overlying Onap-
ing Formation (14-1 6), and by comparison 
with other structures in which an impact 
origin is either proven or strongly suggested 
(17, 18). 

The O n a ~ i n eFormation is an 1800-m-. -
thick unit interpreted as allochthonous brec-
cia formed during the impact event and 
redeposited in the resulting crater (14-1 6), 
but it differs from the ejecta at other impact 
craters in being highly carbonaceous (total 
organic carbon of -0.5 to 1.0%), especially 
in the upper parts of the formation. The 
source of the carbon has long been (and still 
is) a mystery. In addition to being enriched 
in carbon, the Onaping Formation contains 
numerous fragmentsof devitrified glasses and 
shocked rocks. There is also evidence for 
sulfide enrichment from the melting of crust--
a1 rocks by the impact event to produce the 
Sudbury magmas that generated the ores in 
the lower part of the structure (19). 

We examined three samples of the car-
bon-rich upper unit, the so-called "Black 
Tuff." The samples were collected from 
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lamBma 
outcrops about a mile apart in Dowling and 
Levack Townships, in the northwest corner 
of Sudbury basin (Table 1). Samples CSF-
66-43 and CSF-66-36 are from a road cut at 
High Falls, on the Onaping River (Dowling 

Table 1. Summary of the location and estimat­
ed C60 content of Sudbury (Onaping Formation) 
impact deposits. Samples were Soxhlet ex­
tracts of powdered rock for CSF-68-182 and of 
acid residues for CSF-66-36 and CSF-66-43. 
The C60 contents were determined by compar­
ison of the C60 peak intensities in the mass 
spectrum of the sample extracts with those of 
C60 solutions of known concentration. 

Sample Location content 
(ppm) 

CSF-68-182 
CSF-66-36 
CSF-66-43 

High Falls 
High Falls 
Onaping River 

6 to 7* 
10* 

of the acid residue and the percent acid residue in the 
bulk sample. 

Township), which is a type locality for this 
member. Sample CSF-68-182 is similar to 
the High Falls materials but contains sever­
al large (centimeter-sized) shocked and 
melted inclusions. 

Samples were extracted and prepared for 
analysis by standard techniques (20-22). 
Separate Onaping extracts were analyzed by 
laser desorption (23, 24) and laser desorp-
tion post-ionization (25, 26) TOF mass 
spectrometric techniques. The laser desorp­
tion (reflectron) TOF mass spectrum for 
CSF-66-43 (Fig. 1) shows a strong peak at a 
mass-to-charge ratio (m/z) of 720 atomic 
-mass units (amu), which corresponds to 
C 6 0

+ , and a less prominent peak at m/z 840 
amu, which corresponds to C 7 0

+ . Also 
apparent are peaks (see insert of Fig. 1) at 
m/z of 720, 721, and 722 amu that are 
characteristic of the isotopic distribution of 
C60 . The spectrum consists almost entirely 
of C 6 0

+ , and the observed C 6 0
+ /C 7 0

+ peak 
ratio is 15. We were also able to detect a 
peak at m/z of 720 amu and a peak for m/z 
of 840 amu in extracts of CSF-66-36 and 

Fig. 1. Laser desorption 
(reflectron) TOF mass 
spectrum for CSF-66-43 
showing a strong peak at 
m/z of 720 amu and a 
less prominent peak at 
m/z of 840 amu. An insert 
of the C60

+ peak shows 
the isotopic distributions 
for m/z of 720, 721, and 
722 amu (ml Am -800). 
Intensity is given in arbi­
trary units. 
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Fig. 2. Laser desorption 
(linear) TOF mass spec­
trum for a separate sam­
ple of CSF-66-43 show­
ing a strong peak for m/z 
of 720 amu and several 
lower molecular peaks at 
m/z of 64, 96, 128, 160, 
192, 224, 256, 288, and 
320 amu that correspond 
to elemental sulfur (S2 to 
S10 isotopic measure­
ments confirmed by 
FTMS). Intensity is given 
in arbitrary units. 

UUJvi KJU \AU klUA^y^^^. 

200 
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400 
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CSF-68-182 using the same operating pa­
rameters (23) . In addition, a weak signal for 
m/z of 720 amu was obtained for these 
extracts by laser desorption directly off of 
the powdered substrate slurried in a drop of 
toluene and evaporated to dryness on a 
slide. A laser desorption (linear) TOF mass 
spectrum for a separate sample of CSF-66-
43 (Fig. 2) shows a strong peak for m/z of 
720 amu and several lower molecular peaks 
at m/z of 64, 96, 128, 160, 192, 224, 256, 
288, and 320 amu that correspond to ele­
mental sulfur [S2 to S10 isotopic measure­
ments confirmed by Fourier transform mass 
spectrometry (FTMS)] but the peak at m/z 
of 840 amu was not observed (23). More­
over, we analyzed a separate sample of the 
CSF-66-43 extract using laser desorption 
post-ionization TOF mass spectrometry 
(25, 26). In post-ionization, the molecular-
ion yield and degree of fragmentation are 
sensitive to the wavelength used and the 
laser intensity. With increasing laser flu-
ence, the fragmentation of C 6 0

+ was ob­
served with the sequential loss of C2 frag­
ments dominating the spectrum, a charac­
teristic of the C60 molecule (27). 

To confirm further the identification of 
C60 in the Onaping Formation, we investi­
gated the CSF-66-43 extract by EIMS using 
a KRATOS MS50 (28). Three peaks were 
seen at m/z of 784, 785, and 786 amu, 
respectively, but no peaks were evident in 
the 720-amu region. This finding was sur­
prising considering the laser mass spectrom­
etry results that indicate the presence of 
fullerenes and elemental sulfur only. We 
realized that C60 could be reacting with the 
sulfur during the ionization process, result­
ing in a mass spectrum for C60S2 (m/z of 784 
amu). Fullerenes dissolve in molten sulfur 
with maximum fullerene solubilities be­
tween 1 and 3 weight % [3 to 11 fullerene 
molecules per 1000 S8 molecules (29)]. 
Sulfur and fullerenes dissolve simultaneous­
ly in CS2 and, when treated with copper, 
transform into near pure fullerene solutions 
by contact at room temperature (30). 

We redissolved the sample extract in CS2 

and gently stirred the solution in the presence 
of copper at room temperature overnight to 
remove sulfur from the extract. The mass 
spectrum (Fig. 3) of the treated solution re­
vealed three peaks at 719.9985, 721.0046, 
and 722.0197 amu corresponding to 1 2C6 0

+ , 
12C59

 1 3 C + , and 12C58
 1 3C 2

+ , respectively. 
The detection of C60 in the CSF-66-43-
treated extract by EIMS provides further evi­
dence that C60 is present in the samples (28). 
The ratios of the C60 isotopic mass peaks are 
1:0.71:0.34, suggesting a possible enrichment 
of 13C. Independent measurements (see insert 
of Fig. 1) of CSF-66-43 also showed a similar 
13C enrichment. Isotopic compositions mea­
sured by stepped combustion have shown that 
synthetic C60 is slightly enriched in 13C in 
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comparisonwith the graphite rods from which 
it was made (31). The 13C enrichment we 
have found in the Sudbury C,, may be the 
result of isotopic fractionation during the syn-
thesis of fullerenes in the impact event or 13C 
enrichment in the source carbon. 

The C60 content (see Table 1) of the 
Onaping Sudburywhole rock samples is in the 
range of a few parts per million (ppm). The 
C,, content of the rocks is about a factor of 15 

I" 

less than the C,, content. The Onaping 
Sudbury samples appear to be enriched in C6, 
in comparison to other natural terrestrial oc-
currences such as fulgurite (9) and shungite 
(1O), although no actual concentration values 
for these latter occurrences have been report-
ed. Because of the extensive area of the 
Sudbury deposits, this may be one of h e  
largest natural occurrences of fullerenes found 
so far on Earth (32). 

The distributions of carbon and sulfur in 
the Sudbury structure were likely the result of 
an impact event (12-1 9). The abundance of 
sedimentary carbon in the Sudbury target 
rocks is much less than 1%, with an addition-
al 3 to 5% in some rare, thin-bedded, carbon-
ate-bearing sediments, thus eliminating the 
possibility of a significant carbon source from 
these surface rocks. Thus, the combustion of 
these carbonaceous surface rocks, especially at 
the low atmospheric oxygen partial pressures 
characteristic on the Earth 1850 Ma (33), 
seems an unlikely mechanism of formationfor 
the Sudbury fullerenes. The carbon that was 
eventually transformed into fullerenes likely 
came from a carbon-rich impactor. Fullerenes 
may have been present in the impacting 
meteorite, although this seems unlikely be-
cause fullerenes have not been detected in 
carbonaceous chondrites. The presence of 
fullerenes in carbonaceous chondrites is also 
thought to be improbable because the forma-
tion of fullerenes is inhibited bv the Dresence 
of hydrogen (7),which is abundant iA cosmo-
chemical environments. Another possibility 
is that fullerenes may have formed as a result 
of the pyrolysis of organic matter [polycyclic 
aromatic hydrocarbons (PAHs) and kerogen] 

Fig. 3. ~lectron ioni-
zation mass spectrum 
(m1Am-1 0,000)of C,,+, 
revealed three peaks 
at m/z of 719.9985, 
721.0046,and 722.0197 
amu corresponding to a 
12C60+,l2CS9 I3C+, and -z 
12C5, I3C2+, respective- 5 
ly. Intensity is given in C 
arbitrary units. 

present in the meteorite. Fullerenes have 
been synthesized by the pyrolysis of naphtha-
lene at -1000°C (1). A variety of PAHs 
have been identified in meteorites including 
naphthalene, phenanthrene, pyrene, fluo-
ranthene, benzfluoranthene, and coronene 
(7, 34). All of these PAHs have been 
suggested as possible precursors to the forma-
tion of fullerenes in the gas phase (1, 35). 

It has been suggested that organic carbon 
may have formed on the early Earth by the 
recombination of reducing mixtures resulting 
from the shock vaporization of carbon-rich 
bolides upon impact or by impact shocks with 
.the surrounding "target" rocks (36). Carbon 
onions and perhaps fullerenes may have 
formed in a similar manner (8). The organic 
carbon within the vapor plume resulting from 
impact would have been nearly entirely con-
verted to C O  (36). Recent efforts to synthe-
size .molecular forms of carbon from carbon 
oxides showed that carbon oxides undergo a 
loss of CO molecules to form cyclocarbonions 
and large carbon cluster ions (37). Although 
it is intriguing to suggest that the organic 
carbon (PAHs, kerogen, carbon oxides) pre-
sent in the bolide may have been converted to 
carbon clusters and perhaps fullerenes upon 
impact, subsequent metamorphism sustained 
by the Onaping Formation after deposition 
(greenschistfacies probably involving temper-
atures of 300" to 400°C at pressures of 3 to 5 
kilobars) may also have transformed organic 
compounds with time (12, 14-1 6). 

Fullerenes degrade quickly at fairly low 
temperatures when exposed to air (38). The 
survival of fullerenes found in the 1850-Ma 
Sudbury deposits clearly requires storage in 
an environment of low oxygen. Although 
low oxygen levels were present in the 
Earth's atmosphere at the time of the Sud-
bury fullerene synthesis, oxygen probably 
reached present atmospheric levels soon (a 
few hundred million years) after deposition 
(33). The presence of diagenetic sulfides 
indicates that the environment in which 
the Onaping rocks were deposited had low 
oxygen and high sulfur concentrations. 

PFK 
716.9569 

Field-emission scanning electron microsco-
py analyses of a sample of Onaping tuff 
indicate an enrichment of carbon (up to 3 
weight %) in associationwith sulfide-silicate 
complexes, with lesser amounts (<1%) in 
the fine-grained matrix. Perhaps the 
fullerenes in the Onaping rocks were pro-
tected from oxidation by the surrounding 
sulfide-silicate matrix in which they are con-
tained, allowing fullerenes to survive to pre-
sent. This possibility may also explain the 
presence of fullerenes within "yellowish-
brown" fracture filling films in shungite (10). 
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Fullerenes in the Cretaceous-Tertiary 
Boundary Layer 

Dieter Heymann,* L. P. Felipe Chibante, Robert R. Brooks, 
Wendy S. Wolbach, Richard E. Smalley 

High-pressure liquid chromatography with ultraviolet-visible spectral analysis of toluene 
extractsof samplesfrom two Cretaceous-Tertiary(K-T) boundarysites in NewZealand has 
revealed the presence of C,, at concentrations of 0.1 to 0.2 parts per million of the 
associated soot. This technique verified also that fullerenes are produced in similar 
amounts in the soots of commonflames under ambient atmosphericconditions.Therefore, 
the C,, in the K-T boundary layer may have originated in the extensive wildfires that were 
associated with the cataclysmic impact event that terminated the Mezozoic era about 65 
million years ago. 

W h e n  fullerenes were discovered to be 
formed spontaneously in condensing carbon 
vapors ( I ) ,  it was suggested that they might 
be widely distributed in the universe. Subse-
quent searches for fullerenes in interstellar 
media and meteorites (2, 3) have thus far 
been unsuccessful, but C60and C70have 
been reported to occur in samples of shung-
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ite, a meta-anthracite coal from a deposit 
near Shunga, Russia (4), and in fulgurite, a 
substance formed when lightning strikB cer-
tain soils or rocks (5) .  The occurrence of 
fullerenes in shungite is surprising because 
the only routes to fullerenes discovered thus 
far in the laboratory have involved gas-phase 
chemistry at temperatures of more than 
1000°C. Shungite is thought ta have formed 
from carbonaceous material creeping into 
fissures of a Precambrian rock that metamor-
phosed under extreme pressures; hence, ei-
ther the original material already contained 
fullerenes, or these must have formed during 
the metamorphism by as yet unknown solid-
or liquid-phase mechanisms. 

Here we describe a search for ancient 
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