
made different mistakes more frequently. 
However, a second, perhaps additional, 
explanation appears likely in view of the 
prevalence of the adaptive mutations in 
simple repeats. Template-slippage muta- 
tions in simple repeats are characteristic of 
yeast cells (22) and of hereditary colon 
cancer cells (23-25) that are deficient for 
post-synthesis mismatch repair. Thus, the 
hypermutability caused by apparent poly- 
merase errors in E. coli cells ex~osed to 
selection could also indicate decreased mis- 
match repair (26). Down regulation of mis- 
match repair during adaptive mutation has 
been suggested (6, 9, 27) but not in a 
context of recombination-dependent, non- 
templated adaptive mutations. In both the 
cancer cells and in the bacteria ex~osed to 
nonlethal selection, the ability to mutate 
adaptively confers the ability to grow and 
divide. Mechanistic as well as formal simi- 
larities in the two processes may exist (28), 
which raises the possibility of bacterial 
model systems for mutagenesis in cancer. 
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Adaptive Reversion of a Frameshift Mutation in 
Escherichia coli by Simple Base Deletions in 

~omopolymeric Runs 
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Spontaneous mutations are thought to occur primarily in growing cells. However, spon- 
taneous mutations also arise in nutritionally deprived cells, and in some cases this process 
appears to be adaptive. Here it is reported that when a Lac- strain of Escherichia coli is 
under selection for lactose use, the spectrum of Lac+ mutations that arises is different, and 
simpler, than that arising without selection. Mutations appearing during selection were 
mainly one-base deletions in runs of iterated bases. Similar mutations occurring in repet- 
itive DNA elements are associated with a variety of human hereditary diseases and are 
increased in cells that cannot correct heteroduplex DNA. 

T h e  mechanisms by which spontaneous are intrinsic polymerase errors and endoge- 
mutations arise in growing cells have been nous DNA lesions. Indeed, many of the 
the subject of much research. Two causes of mutations that arise spontaneously in bac- 
spontaneous mutation that are often cited teria and in their viruses are the same types 

of errors as those made by DNA polymer- 
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Medlclne. Boston, MA 021 18, USA. unclear if such mechanisms can account for 
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are apparently not growing or replicating 
their DNA (3). Many theories have been 
proposed to explain how mutations occur in 
nongrowing cells and why those mutations 
are adaptive (3-1 1). Comparisons between 
the types of mutations that arise during 
nonselected growth and those that arise 
under selective conditions may help to 
choose among these theories (12). 

In previous publications (7, B ) ,  we de- 
scribed the appearance of Lac+ revertants 
among populations of a strain of Escherichia 
cob, FC40, that cannot use lactose because 
of a frameshift mutation affecting the lac2 
gene. Lac+ revertants occurring during ex- 
ponential growth, which were detected 2 
days after cells were plated with lactose as 
the only carbon source, arose at about 
per cell per generation, a rate that is well 
within the normal range for mutations of 
this type. After day 2, Lacf revertants 
continued to arise at a nearly constant rate 
of about lop9 per cell per hour. The post- 
plating mutants quickly became the main 
class, and 90 to 95% of the Lac+ revertants 
that had appeared after a few days were 
apparently the result of mutations that oc- 
curred after plating. This class of mutants 
did not appear if the cells were starved in 
the absence of lactose or in the Dresence of 
lactose if there was another, unfulfilled 
growth requirement (7). In addition, muta- 
tion to Lac+ during lactose selection, but 
not during prior growth of the cultures, 
required some function or functions of the 
major recombination pathway, RecABC 
(7, 11). In the work reported here, we 
determined the sequence changes in Lacf 
revertants that arose each dav after FC40 
was plated on minimal lactose plates. 

The mutant lac allele. lacI33. carried bv 
FC40 on an F' episome, derives from an 
in-frame fusion of the lac1 eene to the lac2 
gene (13) but has a + 1 fralieshift mutation 
in lac1 that is polar on lac2 (14). Because 
the lac1 coding sequence is not essential, 
this allele can be reverted by any mutation 
that restores the reading frame but does not 
create a nonsense mutation. Such events 
include simple - 1-bp deletions as well as 
more complex DNA rearrangements that 
restore the reading frame within the 130-bp 
target shown (Fig. 1). 

Newly arising, independent Lacf mu- 
tants of FC40 were collected on days 2 to 5 
after the cells were plated on minimal 
lactose plates (15). The DNA from these 
mutants was analyzed by amplification and 
sequencing (16), and the results are sum- 
marized in Tables 1 and 2 and in Fig. 1. 
Nearlv all of the Lac+ mutants that arose 
after day 2 carried -1-bp deletions, and 
most of these occurred in runs of three to 
five bases. In contrast, about 50% of the 
Lac+ revertants that were isolated on day 2 
carried mutations that resulted in deletions, 

Fig. 1. The target for reverting mu- 921 931 941 951 961 

tations in the lac133-lacZ allele. Primer- 
CCATCAAACA GGAmCGC CPGCTGGGGC 

- - 

Sites at which -1-bp deletion mu- 
971 981 991 1001 1011 

tations were found more than once AAACCAGCGT G G A C C G ~ G  CTGCMCTCT CTCAGGGCCA G G C G G ~ O  

are indicated in bold. Numbering is -1 stop 

1021 1031 1041 1051 1061 as i n  the Ecolac sequence in Gen- 
GQTAATCAGC T G T T W G T  CTCACTGGTG MAAG- CCACCCTGGC Bank up to base pair 11 44, but the +I Frameshift 

extra C at base pairs 1036 to 1038, 1071 1081 1091 1101 1111 
which creates the lac133 allele, is GCCCAATACG CAAACCGCCT CTCCCCGCGC GTTGGCCGAT TCATTAATGC 

not numbered. The coding strand is 1121 1131 1141 

shown. The lacl-lacZ gene fusion AGCTGGCACG A C A G G ~ C C  CGA-TC 

(13) eliminates the last five resi- +1 stop 

dues of Lacl, all of the lac promoter and operator, and the first 23 residues (or 24 if the initiating 
methionine is included) of LacZ (base pairs 1145 to 1356 of the Ecolac sequence). The fusion 
protein is transcribed from the mutant IacP promoter. The frameshift mutation at base pairs 1036 to 
1038 was induced by ICR191 (14). This mutation creates a stop codon at base pair 1145 (base pair 
1358 of the Ecolac sequence), and a -1 frameshift mutation upstream of base pair 1016 would 
create a stop codon at base pair 1016. Thus, to revert lacl33, the reading frame must be restored 
between base pairs 101 6 and 11 45. 

duplications, and rearrangements. Thus, Table 1. Summary of Lac+ revertants. 
complex mutations are frequent in the ab- 
sence of selection but are rare during selec- Day Day Day Day Days 
tion. Considerine onlv these two classes of Mutation 2 3 4 5 3 to 5 

- ,  

intragenic revertants, there were nine com- Loss of bases* 1 0 0 1 
plex mutations and 11 - 1-bp deletions Gain of basest 4 0 0 0 0 
among the mutants isolated on day 2 but -I-bp deletion 11 9 12 9 30 
only one complex mutation and 30 -1-bp Extragenic 0 0 2 1  3 

deletions among the mutants isolated after Total 20 10 14 10 34 
day 2 (xZ = 10.9, P = 0.001). Indeed, the *Detected bv a decrease in the size of the am~llfied . . -  
one late-arising deletion mutant, isolated product. ' t~etected by an increase in the size of 

on day 3, was only weakly L ~ ~ +  (see ~ ~ b l ~  the amplified product, except for one, a duplication of 
base pairs 1087 to 1094 (Fig. I), that was detected by 

3), which suggests that this complex muta- sequencing. 
tion may also have arisen during prior 
growth of the culture but took an extra day 
to appear as a Lacf colony. 

Because late-arising Lac+ colonies might 
have been the result of mutations that gave 
only a weak Lac+ phenotype, we measured 
the p-galactosidase activity of an assortment 
of mutants (Table 3). The mutant with the 
largest deletion had the greatest activity, 
422 Miller units, which suggests that this 
deletion creates a strone Dromoter. Not sur- -. 
prisingly, the three extragenic mutants that 
were isolated had rather low p-galactosidase 
activity. Among the - 1-bp deletion rever- 
tants, the levels of p-galactosidase activity 
were about the same-most ranged from 
about 200 to 300 Miller units regardless of 
the day on which they appeared. 

These results limit the types of mecha- 
nisms that mieht be res~onsible for the Lac+ 

u 

revertants of FC40 that arose during selec- 
tion. Although we did not sequence regions 
outside the target region, we read approxi- 
mately 200 bases of sequence for each mu- 
tant and found no sequence changes other 
than the ones that reverted the frameshift. 
In addition, the reverting mutations were 
found at seven different sites. The lack of 
silent mutations and the diversitv of muta- 
tional sites argue against the theory that the 
late-arisine mutations resulted from recom- - 
bination with homeologous (similar but 
nonhomologous) sequences located else- 
where in the genome (10). A distinctive 

feature of the late-arising frameshift muta- 
tions is that 90% occurred in runs of three or 
more bases. This site specificity is typical of 
- 1-bp frameshift mutations made by DNA 
oolvmerases in vitro ( 2 )  and can be ex- 
L ,  \ , 
plained by replication of a misaligned tem- 
plate (1 7). Thus, the late-arising revertants 
of FC40 might be the result of simple poly- 
merase errors, which supports our previous 
conclusion, based on genetic evidence, that 
adaptive mutations require some form of 
DNA replication (8). In vivo, mutations at 
iterated sequences are greatly enhanced by 
the loss of mismatch repair functions (18), 
which raises the possibility, previously sug- 
gested (3, that in nutritionally deprived 
cells, error correction activity may be low, or 
that mispaired or misaligned DNA may be 
inaccessible to the error-correcting enzymes. 
Similar types of mutations, apparently due to 
slippage during replication, repair, or recom- 
bination of repetitive DNA elements, have 
recently been associated with a variety of 
human hereditary diseases (1 9). 

The late-arising revertants of FC40 are a 
subset of the kinds of mutations that can 
revert lacI33, yet they are distinguished 
from the mutations that arise during non- 
selective growth by their requirement for 
RecABC (20). One straightforward expla- 
nation for this result is that - 1 - b ~  deletions 
are produced by the same mechanism both 
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Table 2. Number of occurrences of various frameshift mutations. Blank spaces indicate that no 
mutant was found. 

Mutation* Length D,~ 2 Day 3 Day 4 Day 5 Days 3 
of run to 5 

*Only the first base pair in a run is given. ?The culture contained a jackpot of 193 mutants per l o 7  cells. A total 
of five mutants were amplified and three were sequenced, all of which were the same, which confirmed that the 
-AT frameshifi was the'mutation giving rise to the jackpot (25) 

Table 3. The p-galactosidase activity of various mutants. Lac+ mutants were grown to saturation in 
M9 0.1% minimal glycerol medium (7). The p-galactosidase activity was measured as in (26), and 
the results are given in Miller units. The numbers are for independently isolated mutants of each 
class. Blank spaces indicate either that no mutant was found or that none were assayed. 

Mutation* Day 2 Day 3 Day 4 Day 5 

Loss of bases 76; 180; 422 80 
Gain of bases 73; 183; 272 
-GC at 1020 269 283 
-GC at 1036 223 240 265 
-GC at 1039 285 
-AT at 1056 182 
-AT at 1067 225 

-GC at 1068 165 
-GC at 1072 127; 170; 241 
-AT at 1078 21 6 
-GC at 1093 135 
-GC at 1106 165 

Extragenic 53; 59 76 

'Only the first base pair in a run is given. 

before and during selection but that there is and begins to divide, this would explain 
an extra requirement for some function or why the only mutations that are recovered 
functions of RecABC in the latter case. For are adaptive (4, 7-9). 
example, if the -1-bp deletions are the Note added'in proof: After submission of 
result of polymerase errors, RecABC may this manuscript, we learned that others 
be required to initiate DNA synthesis, to (24) had obtained similar results. 
preserve the products, or both. RecABC 
can initiate DNA synthesis by producing REFERENCESANDNOTES 
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