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Rearrangements of Synaptic Connections in Visual 
Cortex Revealed by Laser Photostimulation 

Matthew B. Dalva* and Lawrence C. Katz 
Assessing patterns of synaptic connections in the developing mammalian neocortex has 
relied primarily on anatomical studies. In a physiological approach described here, the 
patterns of synaptic connections in slices of developing ferret visual cortex were deter- 
mined with scanning laser photostimulation. Functional synaptic inputs to pyramidal cells 
in cortical layers 2 and 3 originating from sites close to the neuronal cell body appeared 
at least 2 weeks before eye opening, prior to the formation of long-range horizontal 
connections. Extensive long-range horizontal connections appeared in the next 10 days 
of development. The number of local connections peaked at the time of eye opening; fhe 
number of these connections subsequently declined to the level found in the adult while 
the specificity of long-distance connections increased. Thus, the relative influence of local 
connections on the activity of layer 2 and layer 3 neurons declines as the cortex matures 
while the influence of longer range connections increases substantially. 

Although neuronal activity participates in 
the development of circuitry in the visual 
system (I),  most insights into the organiza- 
tion of local cortical circuits and their 
development have derived from anatomical 
approaches (2-5) rather than from the di- 
rect assessment of functioning synaptic con- 
nections (6). During development, axonal 
branches are unstable (7) and the locations 
of synapses are difficult to determine, even 
with electron microscopy (8). Thus, al- 
though the basic anatomical features of 
local circuits in developing visual cortex are 
well established (4, 5), the relation be- 
tween these patterns of anatomical projec- 
tions and the functional interactions among 
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individual neurons remains speculative. 
Our investigations focused on the devel- 

opment of horizontal connections in layer 2 
and layer 3 of ferret visual cortex. In adult 
visual cortex, horizontal projections link 
regions with similar functional properties, 
forming clusters of axon collaterals in spe- 
cific regions (2, 9). These horizontal con- 
nections originate ptimaril~ from ~ ~ r a m i d a l  
neurons, form excitatory synapses on other 
pyramidal neurons and interneurons (lo), 
and'extend several millimeters in the tan- 
gential plane of the cortical plate. Anatom- 
ical studies have demonstrated that the 
characteristic patchy patterns of horizontal 
projecting axons in visual cortex are not 
present initially but emerge gradually from a 
more diffuse state by activity-dependent 
mechanisms. These mechanisms involve 
the growth of long, unbranched axons; this 

is followed by the elaboration of collaterals 
in appropriate locations and the selective 
retraction of collaterals in inappropriate 
regions (4, 1 1). However, the locations of 
functional synapses, if any, along these 
collaterals are unknown. We developed 
scanning laser photostimulation to deter- 
mine the number, position, and relative 
strength of functional horizontal connec- 
tions at different stages of development. 

Scanning laser photostimulation is based 
on highly localized laser photolysis of caged- 
neurotransmitters (12) in brain slices (13, 
14). We recorded from single neurons using 
whole cell, patch-clamp techiques in tan- 
gential cortical brain slices (350 pm thick), 
while the slices were continuously perfused 
with artificial cerebrospinal fluid containing 
"caged" glutamate, which is inactive until 
photolyzed by ultraviolet light (UV, 330 to 
380 nm). The localized uncaging of gluta- 
mate at any x, y, z coordinate in the slice 
causes a small number of neurons in the 
region of the laser spot (=I5 pm in diam- 
eter) to generate action potentials; if any of 
these neurons form synapses with the re- 
corded cell, a monosynaptic postsynaptic 
current (PSC) is generated (15). Photo- 
uncaging at a large array of locations 
throughout the brain slice (up to 1500 sites, 
50 p,m apart, covering approximately 3.8 
mm2) .produces a map of the locations that 
generate PSCs in the recorded cell (Fig. 1) 
without contamination by fibers of passage. 

We examined the development of local 
intracolumnar (50.5 mm from the elec- 
trode) synaptic connections and long-dis- 
tance intercolumnar (> 0.5 mm) synaptic 
connections in a sample of 27 neurons from 
tangential brain slices of layer 2 and layer 3 
of ferret primary visual cortex. Animals 
ranged in age from ~ostnatal day 17 (PI 7, 
birth = PO) to adult (>P55). Experiments 
were carried out in ferret brain slices from 
three age groups, on the basis of the devel- 
opmental state of the visual system. The 
first group (PI7 through P26) corresponded 
to the period before eye opening when some 
layer 2 and layer 3 cells were still migrating 
(n = 8 cells), the second group (P27 
through P40) was from the period just 
before and shortly after 2ye Opening (n = 
12 cells), and the third group (mature, P41 
through adult) consisted of slices obtained 
after eye opening and included adults (n = 
7 cells). 

In mature cells, stimulation at most sites 
(82.4 + 3.6%) did not elicit PSCs in the 
postsynaptic cell (Fig. 1) (16). However, 
stimulation at several zones approximately 
1 mm from the cell body evoked PSCs in 
the postsynaptic neuron. Because of their 
size, spacing, and location, these groups of 
functional synaptic inputs are likely to orig- 
inate from the clustered axonal arbors of 
pyramidal cells that have been anatomically 
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described (2, 4, 9). All mature cells had at 
least one cluster of synaptic inputs approx- 
imately 1 mm from the cell body (see Fig. 
1B). Thus, the spatial maps of mature cells 
have features expected from the anatomy of 
individual neurons visualized with intracel- 
lular injection (2, 4). 

The patterns of synaptic connections in 
the youngest animals that we examined 
(PI7 through 26) were completely differ- 
ent from those in the adult (Fig. 2). Local 
responses to uncaged glutamate were dom- 
inated by a large, slow inward current 
(Fig. 2A). This current lasted several hun- 
dred milliseconds and was found in all 
cells from this age group but not in any 
other. The onset of the current during the 
laser pulse itself implies that it arose from 
direct activation of glutamate receptors on 
the recorded cell. That the slow compo- 
nent of this current was much reduced or 
absent in cells from older animals could be 
due to the presence of different subtypes of 
glutamate receptors present in young cells 
(1 7) or to a lower rate of glutamate uptake 
by the glia in the most immature brains 
(18). Superimposed on top of the large, 
direct current were a few small (3 to 15 
PA), evoked synaptic currents. 

Between P17 and P26, the fraction of 
locations generating PSCs in a given map 
was low (9.2 & 1.1 %) (Fig. 3), and almost 
all of the locations that provided synaptic 
inputs to the recorded cell were near the 
cell body (Fig. 3). In seven of eight 
pyramidal cells from P17 through P26 
animals, stimulation at distances where 
clustered connections are found in the 
adult (> 1.0 mm from the cell body) rarely 
evoked responses (2.5 + 0.8% of the 
sites generated PSCs) (Fig. 3). Even near 
the cell body ( ~ 0 . 5  mm), few synaptic 
inputs were detected (Fig. 3). Morpholog- 
ically, the axons of the recorded neurons 
from this age group were long (>0.5 mm), 
unbranched, and immature, in agreement 
with anatomical work (4, 19). Given the 
presence of extensive axons at these ages, 
the paucity of functional inputs onto 
cells from distant sites is surprising. Hori- 
zontal projections are reciprocal (20). thus 
suggesting that, at this age, the long, 
unbranched collaterals of pyramidal cells 
form few functional synapses at locations 
distant from the cell body of origin (21). 

Shortly before and after eye opening 
(P27 through P40, n = 12). patterns of 
synaptic inputs to cells differed from those 
of younger and older animals. Synaptic 
inputs were most numerous during this 
time. In comparison to the P17 through 
P26 age group, the number of synaptic 
inputs in this age group increased both 
locally and at longer distances (Figs. 2B 
and 3). The percentage of stimulated sites 
evoking PSCs almost tripled, from 9.2 + 

1.1 to 25.6 + 4.4%. Unlike maps from the 
youngest age group, for this age group 
numerous PSCs were generated by stimu- 
lation at distant sites, in addition to those 
in the immediate vicinity of the cell body 
(Fig. 3). The change from the youngest 
age to this age is best characterized as a 
constructive phase, with the addition, 
rather than the elimination, of synapses. 
Compared to mature maps, however, the 
patterns of synaptic inputs around the 
time of eye opening (Fig. 4B) were more 
evenly distributed and less organized than 
in the adult (Fig. 4C), although the frac- 
tion of sites stimulated at = 1 mm from the 
cell body that resulted in PSCs was not 
statistically significantly different from 
that in the adult (Figs. 3 and 4). 

Long-distance horizontal projecting ax- 
ons were present at all ages examined. 
Therefore, early in development, when 
collaterals are first elaborated, projecting 
axons must fail to form functional svnaDses , . 
(22), form low numbers of synapses (2 I), 
or form synapses with a low probability of 

transmitter release (23). Thus, in the 
youngest animals, even when axonal ar- 
bors are extensive, cells receive few long- 
distance synaptic connections (Fig. 4A). 
These results imply that axonal projec- 
tions in the developing ferret visual cortex 
do not form functional connections with 
equal probability along their entire length, 
especially during their initial formation. 
Thus, the influence of long-distance 
( ~ 0 . 5  mm) synaptic interactions must be 
weak during this initial period of axonal 
outgrowth. 

When the animals' eyes first open, the 
pattern of functional connections is remi- 
niscent of the pattern of labeling found 
with retrograde tracing and intracellular 
filling methods at eye opening (2, 4, 19). 
The subsequent reorganization of long- 
distance synaptic connections between 
eye opening and maturity is also consistent 
with earlier anatomical experiments (2- 
5 ) ,  supporting the idea that the functional 
connections undergo refinement during 
the period when anatomical rearrange- 

Flg. 1. Photostimulation-derived maps of the pattern of synaptic inputs to single mature neurons 
in tangential slices from ferret visual cortex. The magnitude of the synaptic response originating 
from each site stimulated is represented by the height and color of each pixel. (A) The pattern 
of synaptic inputs to a mature inhibitory neuron obtained from 966 sites covering an area of 
2.4 mm2. Numbered traces illustrate the electrophysiological responses in the recorded neuron 
after stimulation at the numbered sites. The vertical marks near the beginning of each trace 
indicate the opening and closing of the shutter. The cell body of the neuron is located at arrow 
1; the neuron generated an action potential when stimulated at the cell body (trace 1). Arrow 2 
shows the location of an input arising from stimulation near (<0.5 mm) the cell body. Clusters of 
inputs and recorded responses after stimulation at these sites are indicated by arrows 3, 4, 
and 6. Each trace is from stimulation at a different site. Most locations do not provide inputs to 
the cell (arrow 5). (8) Inputs to a mature pyramidal neuron derived from stimulation of 1474 sites 
covering an area of 3.7 mm2. Stimulation of the neuronal dendritic tree produces direct evoked 
responses (arrows 1 and 2). Arrow 3 indicates a single cluster and the responses recorded after 
stimulation of these sites. Arrows 4 and 5 are unresponsive sites. For both maps, the scale bar 
is 250 pm. 
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ments also take place. Furthermore, in 
contrast to the youngest animals where 
PSCs were elicited near the cell body 
(Figs. 3 and 4A), in the mature animals 
many more PSCs were elicited about 1 mm 
from the cell body (Figs. 3 and 4C). 
Because clustered horizontal connections 
are found at about 1-mm intervals, the 
change (see Fig. 4) in the organization of 
inputs at various eccentricities probably 
reflects changes in the horizontal axonal 
collaterals, especially the addition of 
branches to form clusters. 

In the developing cat cortex (whose 

development and organization are similar ber of  local connections then declines 
to those of the ferret), extensive anatom- from the time of eye opening to the 
ical evidence suggests that the long-dis- mature levels (24). The decline in inter- 
tance, intercolumnar axonal projections columnar synaptic connections indicates 
undergo extensive rearrangements and re- that these highly local connections under- 
modeling (4, 1 1 ) .  Our results suggest that go synaptic remodeling and reorganization 
an equally dramatic shift in the organiza- as do longer range connections. Further- 
tion of local intracolumnar connections 
occurs during postnatal cortical develop- 
ment in the ferret. Local synaptic connec- 
tions develop first and then increase in 
number, becoming at around the time of 
eye opening the most numerous connec- 
tions observed at any age (23). The num- 

0 PA 
Inward current 

Fig. 2. (A) The pattern of synaptic inputs to a P25 pyramidal neuron resulting from stimulation of 
997 sites covering an area of 2.5 mm2. The same conventions as in Fig. 1 are used. The typical 
long slow response to direct stimulation with photostimulation in the youngest age group is shown 
at arrow 1. Arrows 2 and 3 indicate sites where stimulation generated both small PSCs and the 
direct current. Only a few PSCs were evoked more than 0.5 mm from the cell body (arrow 4). (B) 
The pattern of inputs to a P30 pvramidal neuron from the stimulation of 982 sites coverina an area 
of 2.5 mm2. ~onger distance inputs are scattered in the tangential plane (arrows 3,4, and 6), and 
many PSCs are seen near the cell body response (arrows 1 and 2). For both maps, the scale bar 
is 250 pm. 

Flg. 3. Age-related changes in the origin of synaptic 
inputs with distance from the cell body. The percent- 
age of stimulated sites that generated PSCs at various 
distances from the cell body in each map for each age 
group is shown. Within the P27 through P40 and the 
P17 through P26 age groups but not in the P41 
through adult group, the percentages of PSCs found 
at 0.5 to 1.0 mm and >1.0 mm were significantly 
different from the percentages of PSCs at 0.0 to 0.5 
mm (P < 0.05). At all distances from the cell body, the 
P27 through P40 group differed significantly from the 
P1 7 through P26 group (P < 0.02). The P41 through 
adult grwp differed significantly from the P1 7 through 
P26 group only at 0.5 to 1.0 mm and >1.0 mm (P > 
0.01). Within 0.0 to 0.5 mm, the P27 through P40 and 
the P41 through adult groups were significantly differ- 
ent from each other at P < 0.02. All significance 
testing was done with the Student's t test. 

Fig. 4. Representative maps of the number of 
synaptic inputs to pyramidal cells at 50-pm 
resolution for each of the three age groups. The 
number of PSCs evoked at each location is 
represented by the colored squares; locations 
with no synaptic inputs are black. The location 
of the cell body is indicated by the white cross. 
(A) The location of PSCs evoked during the 
stimulation of 903 different sites covering an 
area of 2.3 m d  around a P20 pyramidal cell. 
Synaptic responses at P20 are confined to the 
region near the cell body response. (B) At P30, 
synaptic inputs are more numerous and loosely 
organized into groups, as in the upper right and 
in the bottom at the center of the map. Many 
synaptic inputs are located near the cell body. 
A total of 953 sites were stimulated, covering an 
area of 2.4 m d .  (C) A mature pyramidal cell 
(P53) with synaptic inputs that form two dis- 
crete groups in the upper right and lower right 
corners. A total of 1268 sites were stimulated, 
covering an area of 3.2 m d .  The scale bar is 
250 pm. 

SCIENCE VOL 265 8 JULY 1994 



more, our observations imply that the 
relative influence of very local synaptic 
connections on cell activity is probably 
greatest during the period before eye open- 
ing and declines in the adult. Theoretical 
models of self-organizing systems have pro- 
posed that local synaptic interactions are 
central to the emergence of functional 
architecture in cortex (25); understanding 
the actual strength and extent of intracor- 
tical connections should allow critical 
testing of such models. 
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