
cluster structures occurs at n = 6. 
The IR spectrum of the dominant R2PI 

transition assigned to BW, (Fig. 2G) fur- 
ther confirms this interpretation. By com- 
parison to the BW6 spectrum, the spectrum 
of BW, transfers additional intensity from 
the free 0-H stretch transitions at 3713 
cm-' to new bands in the region from 3500 
to 3600 cm-' ascribable to double donor 
0-H stretches. Thus, already by BW,, the 
majority of water molecules donate both 
hydrogens to hydrogen bonds. 

We cannot presently distinguish which of 
the several low-energy noncyclic W, struc- 
tures is present in BW6 and BW,. In fact, 
the R2PI spectra of Fig. 1, E and F, show 
weak features that may be attributable to 
other structural isomers; IR spectra of these 
features as well as IR spectra of even larger 
BW, clusters are needed. Given the large 
number of calculated structures with nearly 
the same energy [Tsai and Jordan (1 7) found 
20 W6 structures within 2 kcallmol of the 
lowest energy structure], the presence of 
benzene may alter the energy ordering of the 
W, structures. Ultimately, calculations of 
the IR frequencies and intensities of the 
BW, clusters themselves are needed for di- 
rect comparison with experiment. 
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Deep Seismic Expression of an Ancient 
Plate Boundary in Europe 

Alet Zielhuis and Guust Nolet 
Seismological results on the structure of the upper mantle below Europe reveal a marked 
contrast in seismic properties between Precambrian and younger parts of Europe. The 
Precambrian craton in eastern Europe is characterized by high shear-wave velocities, 
whidh can be explained by low temperatures. The transitiori to low seismic velocities below 
Phanerozoic Europe coincides with the crustal boundary zone of the craton and exists to 
depths of at least 140 kilometers. Despite the long and complex tectonic history of the plate 
boundary zone, the transition is remarkably sharp, which rules out any significant lateral 
transport of asthenospheric material across the suture zone. 

Western and eastern Europe have distinct- 
ly different geological histories. Precam- 
brian eastern Europe has been stable since 
Late Precambrian times. In contrast, west- 
ern Europe was formed during Phanerozoic 
accretion to the Precambrian continent. At 
crustal levels the boundary between the two 
tectonic provinces is formed by an ancient 
suture zone, the Tomquist-Teisseyre zone 
(TTZ). Stretching from south Sweden to 
the Black Sea, the TTZ is Europe's largest 
tectonic lineament. Previous seismological 
studies (I) have shown that eastern and 
western Europe have different upper mantle 
structures, but little has been known about 
the character, exact location, and depth of 
the transition between .the structures. To 
investigate this ancient plate boundary, we 
discuss a detailed three-dimensional model 
for the shear-wave velocity in the upper 

A. Zielhuis, Research School of Earth Sciences, The 
Australian National University, Canberra ACT 0200, 
Australia. 
G. Nolet, Department of Geological and Geophysical 
Sciences, Guyot Hall, Princeton University, Princeton, 
NJ 08544, USA. 

mantle below Europe (2). This model was 
obtained by waveform inversion of both 
body and surface waves, recorded on verti- 
cal-component seismograms (3). Using rel- 
atively short paths and high frequencies (up 
to 60 MHz) we obtained a lateral resolution 
of about 200 km locally, which compares 
very favorably with the resolving power of 
1000 to 2000 km in current global models 
of shear-wave velocity variations (4-1 1 ) . 
The incorporation of higher modes of Ray- 
leigh waves gives a depth reqlution of 90 
km at a depth of 80 km and f50 km at a 
depth of 400 km, which is superior.tKthat 
of most fundamental mode studies. The 
three-dimensional model reveals that the 
TTZ is not only discernible at crustal 
depths but that it also forms an important 
boundary at upper mantle levels. 

The Precambrian craton, consisting of 
the Baltic shield and Russian platform, is 
characterized by high shear-wave veloci- 
ties (Fig. 1, A and B) . The sharp transi- 
tion to lower velocities of the Phanerozoic 
regions of western Europe coincides with 
the TTZ. Laterally, the velocity contrast 
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Fig. 1. (A) Homontal secton through the shear-wave velocity model at a 
depth of 80 Ian. The reference veloci is 4.5 krnls; velocity anomalies are 
contoured according to the scale bar. The Precambrian .regions in 
eastern Europe [Russian platform (RP) and Baltic s h i  (BS)] are 
charactwbd by high-veloci a n d i e s  of up to 5%. The sharp transi- 
tion to the lawer vekciies in west and central Europe coincides with the 
ancient suture zone between Precambrian and Phanerozdc Europe, the 
TlZ. sauthwest of the TTZ, veloci anomalii range from -7.5% in the 
Pannonian basin (PB) to about -3.5% in northern Germany and Poland. 
Dashed lines depict major tectonic featwes. The polygon bounds the 
region where spatii resolution is good. (B) Horhontal section through 
the velocity model at a depth of 140 krn. The reference velocity is 4.5 
Icmls.ThevekcitycontrastbelowtheTTZ.thesuturebetweenPrecam- 
brim and Phaneromic Europe, is evident at this depth. Line styles, 
symbols, and colors are as in (A). (C) (Fhltom) Cross section perpen- 
dicular to the cram bwndary, aams the Pamanian basin and the Russian d i  of 200 krn fran 4.7 kmls bekmr the Russian plafform to 4 2  knb 
platlorm.Vebdtyenanaliiwithrespecttoaanectimensionel~ bebwthePamonianbasin.(Top)Geographicalmapi-thelineof 
model are cmtoumd acoording to the scale k. The velocity varis u e  a cross section and of major tectonic elements (dashed lines). 

across the suture zone varies signifi- Sweden and Germany (Fig. 2). The accretion of central and western Europe 
cantly. The largest contrast (12%) is in Although the ancient plate boundary started in Late Silurian times with the colli- 
central Europe, between the Russian zone shows no sgnhcant tectonic activity at sion of Avalonia (encompassing the Ar- 
platform and the Pannonian basin (Fig. present, our results demonstrate that it is still dennes, England, Wales, southern Ireland, 
1C). The lowest contrast (5%) is in a prominent feature in the upper mantle. Its and parts of northeastern North America) 
northwestern Europe, between southern early history is not well understood (12, 13). and Baltica (the Baltic shield and Russian 

platform) after closure of the intermediate 

eastern boundary of Avalonia and Baltica 
and became part of a growing Europe. Dur- 
ing accretion, the TTZ deformed in a stress 
regime that changed from sailre-slip at the 
end of the Variscan orogeny to extension in 
Triassic times and transpression during the 
Alpine orogeny (12, 16, 17). Despite the 
strong deformation within the plate bound- 
ary zone, the Precambrian crust just east of 
the TTZ has remained undeformed since 
Early Paleozoic times (1 7). Significantly, our 
tomographic images reveal a relation be- 
tween the size of the velocity contrast across 
the plate boundary zone and the time of 
accretion and tectonic activity west of the 

-340 mJs +340 d s  TTZ. In the northwest, the basement of 
Fig. 2. Vertical section across the northwestern part of the TTZ, near south Sweden and Germany. northern Germany has been stable since the 
Abbreviations are as in Fig. 1. Early Paleozoic and the velocity contrast as 

&an, the Tornquist Sea (14, 15). Since 
then, many other micro-continents that had 
rifted off Gondwana collided with the south- 
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imaged is smaller than in central Europe, 
where back-arc spreading in the Pannonian 
basin started around the Middle Miocene 
during subduction along the Carpathian arc 
(16, 18). 

Although a direct interpretation of the 
velocity contrast in terms of temperature or 
compositional difference is difficult (1 9), 
some inferences can be made by combining 
different sources of information. Surface 
heat-flow values are distinctly different on 
either side of the TTZ. On the Precambrian 
Russian platform, heat-flow values are gen- 
erallv less than 40 mW/m2. In contrast. in 
the ~hanerozoic regions heat flow is higher 
than 60 mW/m2; for instance, the heat flow 
in the Pannonian basin exceeds 80 mW/m2 
(20). From heat-flow data, the temperature 
at a depth of 80 km below the Russian 
platform is estimated to be 650°C (21). 
With this temperature, the extrapolation of 
laboratory data (22) predicts a velocity of 
4.72 km/s both for a pyrolite (23) and a 
piclogite (24) mantle composition. This val- 
ue is in good agreement with the average 
wave speed of 4.7 km/s at a depth of 80 km 
below the Russian platform indicated by our 
tomographic model, which suggests that the 
high velocity below the Precambrian craton 
can be explained by relatively low tempera- 
tures. Because of extension and subsidence 
from the Neogene to the present, we cannot 
apply a steady-state geotherm to infer the 
temperature below the Pannonian basin 
(25). However, the velocity in our model is 
4.2 kmls at a depth of 80 km (26), which is 
well below the velocity predicted for pyrolite 
and peridotite below the solidus (22). When 
the recent volcanic activity in this area is 
considered (1 8), the presence of partial melt 
is a plausible explanation for the low veloc- 
ities below this region. 

The increased mobility of partially mol- 
ten material west of the TTZ maintains a 
high temperature near the craton boundary 
by advection. The sharpness of the velocity 
contrast down to at least 140 km in depth, 
however, rules out the lateral transport of 
asthenospheric material, solid or partially 
molten, across the TTZ. For example, in 
our model the distance over which the 
velocity changes from low to high is about 
200 km (Figs. 1 and 2). This distance is at 
the limit of the seismic resolution and 
shoutd therefore be considered as an upper 
value for the width of the transition zone. 
The characteristic distance of heat conduc- 
tion is L = f i t  for a thermal conductivity, 
K, of =lop6 m2/s and time t. This distance 
is -100 km for a t of 400 million years 
(my), the time since subduction of the 
oceanic lithosphere of the Tornquist Sea 
and accretion of the first terranes to the 
Precambrian continent Baltica. This dis- 
tance might be representative for the north- 
western part of this plate boundary zone. 

Elsewhere, the time that passed since accre- 
tion and tectonic activity is shorter, and for 
a t of 100 my, L is =50 km. Both distances 
are compatible with the width of the 
boundary zone as imaged by the waveform 
inversion. The absence of advective heat 
transport across the upper plate boundary 
zone attests to the stability of the Precam- 
brian craton to deep levels and forms an 
independent support of Jordan's hypothesis 
that the continental tectosphere is stabi- 

20, lized against destruction by convection 
(27). Below the TTZ the contrast becomes 
less pronounced at depths of more than 21. 

about 200 km, but further to the east higher 
22, 

velocities extend to larger depths. This 
suggests a thinning of the platform edge, 23. 

which is interpreted by Nolet and Zielhuis 
(28) as an effect of erosive action due to 24. 

subducted volatiles. 25. 
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