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Structure of the RGD Protein Decorsin: Conserved 
Motif and Distinct Function in Leech Proteins That 

Affect Blood Clotting 

Andrzej M. Krezel, Gerhard Wagner,* Jana Seymour-Ulmer, 
Robert A. Lazarus* 

The structure of the leech protein decorsin, a potent 39-residue antagonist of glycoprotein 
Ilb-llla and inhibitor of platelet aggregation, was determined by nuclear magnetic reso- 
nance. In contrast to other disintegrins, the Arg-Gly-Asp (RGD)-containing region of 
decorsin is well defined. The three-dimensional structure of decorsin is similar to that of 
hirudin, an anticoagulant leech protein that potently inhibits thrombin. Amino acid sequence 
comparisons suggest that ornatin, another glycoprotein Ilb-llla antagonist, and antistasin, 
a potent Factor Xa inhibitor and anticoagulant found in leeches, share the same structural 
motif. Although decorsin, hirudin, and antistasin all affect the blood clotting proce_ss and 
appear similar in structure, their mechanisms of action and epitopes important for binding 
to their respective targets are distinct. 

Blood-sucking leeches are anatomically secrete several proteins that affect blood 
and physiologically adapted to their ecto- clotting, a complex process involving plate- 
parasitic life-style ( I ) .  Leech salivary glands let adhesion and aggregation, the coagula- 

tion and fibrinolytic systems, and the endo- 
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antistasin, which inhibits Factor Xa (5); 
and hementin, which degrades fibrinogen 
and fibrin (1). Decorsin and ornatin, also 
from the leech, block fibrinogen binding to 
the platelet receptor glycoprotein IIb-IIIa 
(GP IIb-IIIa) and potently inhibit platelet 
aggregation (6, 7). 

We present the solution structure of 
decorsin, a 39-residue protein from the 
leech Macsobdella decma (6, 8). It contains 
the RGD adhesion site recognition se- 
quence, which is found in fibrinogen, fibro- 
nectin, vitronectin, and other GP IIb-IIIa 
ligands and is thought to be essential for 
binding to many integrins (9). Decorsin is 
related to the disintegrins, a family of 
RGD-containing GP IIb-IIIa antagonists 
from snake venom (1 0). Previous nuclear 
magnetic resonance (NMR) structural stud- 
ies on the disintegrins kistrin, echistatin, 
and flavoridin have shown that the RGD 
sequence, which is the only epitope re- 
quired for binding (I I), lies at the apex of a 
conformationally ill-defined extended loop 
(12); similar results have been reported for 
the solution and x-ray structures of the 
RGD-containing tenth type 111 module of 
fibronectin (1 3). The RGD sequence in the 
x-ray structure of the fibronectin type 111 
domain from tenascin is well defined; how- 
ever, it is uncertain whether this consti- 
tutes a recognition site (14). 

The structure of decorsin is well defined, 
except for the first three NH2-terminal 
residues and some surface side chains (Fig. 
1) (15). The average pairwise root-mean- 
square (rms) difference for the backbone 
atoms (N, Ca, C') of residues 4 through 39 
was 0.35 A; the average rms difference from 
the mean coordinates was 0.24 A (1 6). The 
dominant features of the decorsin structure 
are two $ sheets, which are linked by three 
disulfide bonds. The three disulfides form 
the protein core, which does not contain 
any bulky hydrophobic side chains. The 
disulfide connectivities (Cys7 to Cys15, 
Cys17 to CysZ7, and CysZ2 to Cys3') were PiO. 1. (A) Stereo diqram of 25 SuPerimPod strut- C 1 

identified from nuclear Overhauser en- - Of &comin. The RGD rmition site residues 
hancements between methylene groups of labeled. Only at- shown: in 

black, oxygen in red, nitrogen in blue, and sulfur in the cysteines and were confirmed by calcu- flw, St- d'm of a single 
lations without explicit disulfide bond con- sDlution structure of decorsin, rotated 900 to 
straints. The final set of structures was ~ 1 1  heavy atoms are end all residues are 
calculated with disulfide bonds included as numbered. bm bonds are dr- dotted . 
covalent bonds; their geometry is well- t i is .  (C) R i i  diagram of decorsin in the same 
defined (17). The first $ sheet is short and &entation as (A) showing secondary strudure ele- 
consists of three strands. Strands S2 (Cys15 ments and disulfide bridges (31). The five B strands 
to Cys17) and S3 (AspZ0 to CysZZ) form a W bbeled S1 to S5. The WII~IIO terminal residue (Nl) 

hairpin; strand S1 (Pro5 to Cys7) forms one several selected are 
edge of the sheet and is parallel to S2. The 
second sheet is a two-stranded antiparallel 
hairpin consisting of strands S4 (GlnZ6 to 
PheZ9) and S5 (Pro36 to G ~ u ~ ~ ) .  All reverse 
turns are well-defined. These include an 
atypical turn (residues 8 to 1 I), a type VIII 
turn (11 to 14) (la), a type 11' turn (17 to 
20), a type I1 turn (23 to 26), and a 
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distorted type 11' turn (19) with Gly3' and 
Asp33 in positions 2 and 3 of the turn. 
Eleven hydrogen bonds were initially in- 
cluded as constraints in the structure calcu- 
lations (20); in the final structures, four 
additional peptide backbone-backbone hy- 
drogen bonds were identified from distance 
criteria (2 1 ) . 

The backbone conformation of the 
RGD-containing recognition loop is well 
defined (Fig. 1A). Two proline residues 
(Pro3' and Pro36) flank the RGD sequence. 
The limited flexibility of the Q torsion angle 
of proline residues may contribute to the 
observed rigidity of the recognition site. 

The conformation of the RGD sequence 
places the side chains of Arg3' and in 
almost opposite directions (Fig. 1A). 
Whereas the side chain of Asp33 is some- 
what conformationally restricted, the side 
chain of Arg3' is not. The RGD-containing 
loop of decorsin-and Asp33, in particular 
(I 1 )-is conformationally well defined rel- 
ative to the disintegrins (12). Although 
this difference might be expected to confer 
altered binding affinity or specificity to in- 
tegrins, decorsin is similar to the disinte- 
grins insofar as it binds to both GP IIb-IIIa 
and the vitronectin receptor ((rvP3) with 
high affinity (6, 10, 22). 

Fig. 2. Stereo diagram of the backbone atoms of decorsin (black) superimposed with residues 
1 to 40 of hirudin (green) [Brookhaven Protein Data Bank IHIC. model 15 (23)l. Disulfide bonds 
are drawn in yellow. Side chains of the epitopes important for binding are highlighted by dotted 
van der Waals surfaces. The structures were superimposed to minimize the rms difference 
between backbone atoms of residues 4 to 8, 14 to 17, 21. 22. 26 to 29, and 35 to 39 of decorsin 
and the corresponding residues of hirudin (3 to 7. 13 to 16, 21, 22, 27 to 30, and 36 to 40). These 
two structures had the lowest rms difference from the average structure of either ensemble. 

Fig. 3. Selected amino acid sequences of leech proteins containing the LAP motif that affect the 
hemostatic process. Conserved cysteine residues are boxed. The epitopes important for binding 
to their respective targets are bold and shaded. The p strands in decorsin are indicated as S1 
to S5. Disulfide bonds are drawn with lines. Residues in the sequences illustrated are decorsin, 
1 to 39 (6); hirudin, 1 to 40 (3); hirudisin. 1 to 40 (29); ornatin E. 7 to 50 (7); and antistasin A, 13 
to 49 and 67 to 104 (5); residue numbers correspond to decorsin. Sequences were aligned by 
hand. Single-letter abbreviations for amino acids are used: A. Ala; C. Cys; D, Asp; E, Glu; F, Phe; 
G, Gly; H. His; I ,  Ile; K, Lys; L, Leu; M. Met; N. Asn; P. Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; 
W, Trp; and Y, Tyr. 

After the structure was solved, we dis- 
covered that the fold of decorsin closely 
resembles the fold of the first 40 residues of 
hirudin (Fig. 2) (23-25). The sequence 
identitv between decorsin and anv of the 
hirudin sequences does not exceed 24% 
(26); cysteines alone account for 15% of 
the identity (Fig. 3). The amino acid 
composition also differs; decorsin has more 
aspartic and arginine residues, as well as 
six proline residues, that are completely 
absent amone the first 40 residues of hiru- " 
din. The key to structural similarity is the 
spacing of the cysteine residues forming 
the disulfide bonds. In addition, the pres- 
ence of residues facilitating the formation 
of the reverse turns (Gly and Asn) and 
some of the bulky hydrophobic side chains 
are conserved. Residues 8 to 12 of hirudin 
form a short loop, whereas corresponding 
residues 9 to 13 in decorsin form two 
consecutive reverse turns, accommodating 
the partially buried side chain of Asp1'. 
The decorsin and hirudin structures also 
differ in the location of the type 11' and 
type I1 reverse turns formed by residues 17 
to 20 and residues 23 to 26, respectively. 
The two P sheets and the overall confor- 
mation of the hairpin loop bearing the 
RGD sequence in decorsin are similar to 
those in hirudin (23, 24). However, the 
loop region in decorsin (residues 30 to 36) 
is relatively well defined in contrast to that 
of hirudin (23). The average rms differ- 
ence between the backbone atoms (N, Ca, 
and C') of the core residues of decorsin 
and hirudin was 0.93 A (Fig. 2). 

Because the decorsin and hirudin struc- 
tural similarity involves the spacing of the 
six cysteine residues, we searched the Day- 
hoff protein database for the following 
motif 

where X,, is a string of any n residues 
except cysteine. A total of 181 sequences 
out of the 140,192 sequences searched fit 
this criterion. Of these, 3 were decorsin, 
150 were hirudin, 9 were ornatin, and 9 
were antistasin (27). Ornatin is a potent 
GP IIb-IIIa antagonist isolated from leech 
Placobdella ornata (7). Several isoforms 
exist, which share from 34 to 42% se- 
quence identity with decorsin. The posi- 
tion of the RGD sequence in ornatin is the 
same as in decorsin (Fig. 3). The sequence 
and functional similarity of ornatin and 
decorsin suggest that their structures are 
also similar. 

Of particular interest is antistasin, a 
119-residue, cysteine-rich protein from 
the leech Haementaria officinalis. Antista- 
sin is a potent anticoagulant that stoichi- 
ometrically and selectively inhibits Factor 
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Xa, another serine protease in the coagu- 
lation cascade (5). Antistasin contains a ~, 

twofold internal repeat that represents two 
closely related disulfide-bonded structures 
(5). O n  the basis of the conservation of 
cysteines and some of the key turn residues 
(Fig. 3),  we speculate that each domain of 
antistasin shares a similar fold to that of 
decorsin and hirudin (28). We propose 
the term "LAP motif" (leech antihemo- 
static protein) to refer to the general 
tertiary fold of this protein family. 

Although decorsin. hirudin. and an- - 
tistasin are all from leeches and all affect 
the hemostatic process, their sequences, 
activities, and binding epitopes differ. Hi- 
rudin forms a tight complex with throm- 
bin, having numerous significant binding 
contacts: residues 1 to 3 bind at the active 
site and 9 out of the final 11 COOH- 
terminal residues have interactions with 
the exosite (24). Hirudin does not contain 
an RGD sequence and has no binding 
affinitv for GP IIb-IIIa; onlv inhibition of , , 
thrombin-induced platelet aggregation is 
observed (29). The epitopes in hirudin 
that are necessary for activity either have 
been replaced by different side chains or 
are missing altogether in decorsin, which 
does not inhibit thrombin (22). Antista- 
sin is a slow tight-binding inhibitor of 
Factor Xa and inhibits by the standard 
mechanism common to many serine pro- 
tease inhibitors (30). The PI active site 
residue in antistasin is Are34 (5). which - ~ , ,  

corresponds to Proz3 in decorsin and Glyz3 
in hirudin (Fig. 3). Antistasin does not 
inhibit thrombin (5) ; no reports of any GP 
IIb-IIIa antagonist activity exist. Further- 
more, neither hirudin nor decorsin inhibit 
Factor Xa (3, 22). 

The RGD sequence was recently intro- 
duced into hirudin, producing chimeric 
proteins termed hirudisins (29). However, 
their activity in adenosine diphosphate- 
induced platelet aggregation assays was 
about one-hundreth the activity of de- 
corsin. Possible explanations for poor activ- 
ity include suboptimal conformation of the 
recognition site loop and the presence of a 
lysine residue in position 36 of the hirudisin 
sequence (Fig. 3), a position that generally 
is Asp in decorsin and ornatin isoforms or 
flanked by Asp in most disintegrins (7, 10, 
29). 

The LAP motif apparently provides a 
framework for entirely different, yet highly 
specific activities of leech salivary proteins 
that potently affect hemostasis. Proteins 
that share the LAP motif likely arose as a 
result of divergent evolution. A n  interest- - 
ing class of leeches to be studied in this 
respect would be the genus Acanthobdella, 
which are considered living fossils. The 
isoforms of hirudin, antistasin, and orna- 
tin may result from multiple alleles present 

in a single leech or from multiple genes in 
the leech population (3, 5, 7, 26). 

It is not unexpected that hematopha- 
gous leeches might possess multiple pro- 
teins directed toward different targets to 
prevent clot formation. However, that 
various species of leeches would use the 
same protein scaffold but different binding 
epitopes and diverse mechanisms to affect 
hemostasis is notable. 
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