
Fig. 4. Methylation status of the FRA16A 
p(CCG), repeat assessed by Fnu 4HI diges- 
tion. Pst I-Rsa I double digests of chromosomal 
DNA from lymphocytes of normal (lanes 1 and 
2) and FRA16A individuals (lanes 3 to 5) were 
treated with (+) or without (-) Fnu 4HI and 
subjected to Southern blot analysis with the 
650-base pair Not I-Rsa I fragment from 
pf16A3. This probe detects an 850-base pair 
constant band (C) at the normal FRA16A locus, 
several cross-hybridizing bands located else- 
where in the genome (B), and the unstable 
FRA 16A alleles in FRA 16A-expressing individ- 
uals (A). Digestion with Fnu 4HI eliminated the 
normal (C) allele [and cross-hybridizing bands 
(B)]; however, only minor alteration is afforded 
to the FRA16A fragment (not all Fnu 4HI sites 
contain a methylatable CpG), indicating resis- 
tance to digestion of the majority of the se- 
quence containing the p(CCG), repeat be- 
cause of methylation. 

ylation associated with fragile sites does not 
appear to be a necessary condition for the 
mutation process, although it may be essen- 
tial for the phenotypic manifestation of the 
disease (1 9) or the cytogenetic expression 
of the fragile site or both. 

To explore the relation between the 
sequence composition of fragile sites and 
the chemistry of their induction, it will be 
of interest to determine the structure of 
(nonfolate-sensitive) fragile sites that are 
induced by a variety of chemicals and to 
determine whether methylation plays a role 
in their mutation or cytogenetic expression. 
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Receptor and Ligand Domains for Invasion of 
Erythrocytes by Plasmodium falciparum 

B. K. L. Sim,* C. E. Chitnis, K. Wasniowska, T. J. Hadley, 
L. H. Miller? 

A 175-kilodalton erythrocyte binding protein, EBA-175, of the parasite Plasmodium falci- 
parum mediates the invasion of erythrocytes. The erythrocyte receptor for EBA-175 is 
dependent on sialic acid. The domain of EBA-175 that binds erythrocytes was identified 
as region II with the use of truncated portions of EBA-175 expressed on COS cells. Region 
II, which contains a cysteine-rich motif, and native EBA-175 bind specifically to glycophorin 
A, but not to glycophorin B, on the erythrocyte membrane. Erythrocyte recognition of 
EBA-175 requires both sialic acid and the peptide backbone of glycophorin A. The iden- 
tification of both the receptor and ligand domains may suggest rational designs for receptor 
blockade and vaccines. 

T h e  erythrocytic stage of P. fhpanun is 
responsible for the death of an estimated 2 
million children annuallv. Invasion of ervth- 
rocytes by malaria parasites requires parasite 
ligands and erythrocyte receptors (1, 2). One 
ligand of P. faktpurum is an 175-kD protein 
(EBA-175), the binding of which is depen- 

B. K. L. Sim, C. E. Chitnis, L. H. Miller, Laboratory of 
Malaria Research, National Institutes of Health, Be- 
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dent on sialic acid (N-acetylneuraminic acid) 
on the erythrocyte membrane (3, 4). Evi- 
dence from a number of studies indicates that 
EBA-175 is a ligand for invasion (3-8), and 
antibodies against EBA-175 block merozoite 
invasion of erythrocytes in vitro (6). Hereto- 
fore, the binding domain on EBA-175 was 
unknown and its erythrocyte receptor had not 
been definitively identified. We report here 
both the identification of the domain of EBA- 
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secretory signal and transmembrane segments 
of herpes simplex virus glycoprotein D [HSV 
gD] (9) (Fig. 1A). Expression on COS cells 
was determined by immunofluorescence (1 0). 
In an erythrocyte rosetting assay (I I), only 
COS cells expressing region I1 (Fig. 1B) 
bound human erythrocytes in a rosette (Fig. 
1C). When expression was followed by im- 
munofluorescence and the rosetting assay, 
rosetting was seen only on COS cells that 
expressed region 11. However, some COS 
cells expressing these regions did not form 
rosettes, possibly because of the different lev- 
els of expression obtained in this transient 
expression system. Regions I, I11 to V, and VI 
did not bind erythrocytes. 

The specificity of binding of normal, 
mutant, and enzyme-treated erythrocytes to 
region I1 expressed on COS cells was iden- 
tical to the pattern of binding of native 
EBA-175 to erythrocytes (Table 1). Impor- 
tantly, both native EBA-175 and region I1 
expressed on COS cells did not bind human 
erythrocytes that lacked sialic acid or that 
lacked glycophorin A [En(a-)]. Further- 
more, the binding pattern of animal eryth- 
rocytes to native EBA-175 and to region I1 
was identical. The absolute correlation of 
the binding patterns of region I1 and native 
EBA-175 indicates that region I1 contains 
the erythrocyte binding domain of EBA- 
175. This conclusion is supported by a re- 
cent study demonstrating that the homolo- 
gous region I1 of P. vivax and P.  knavksi 
Du$ binding proteins is the only region to 
bind Du$ blood grouppositive human 
erythrocytes (12). 

Flg. 1. Regions II and F, (Camp) expressed in 
COS cells bind human erythrocytes. (A) Sche- 
matic drawing of regions I to VI of the extracel- 
lular portion of EBA-175 (8). Hatched areas 
represent the cysteine-rich regions (5' Cys and 
3' Cys). Lines below the schematic represent 
regions expressed separately on the surface of 
COS cells. The data relate the rosetting (posi- 
tive) or the lack of rosetting (negative) of human 
erythrocytes on COS cells expressing each re- 
gion (Table 1). (B) lmmunofluorescent localiza- 
tion of region II expressed on the surface of COS 
cells transfected with the gene fragment encod- 
ing region II. (C) Human erythrocytes forming a 
rosette over COS cells expressing region II. 

Region I1 of EBA-175 consists of two 
copies of the 5' cysteine-rich domain desig- 
nated F, and F2 (Fig. 1A). To investigate 
the simificance of the doublet of the 5' 

L. 

cysteine-rich domain, we expressed F, and 
F, separately on COS cells. Only region F, 
bound erythrocytes, the binding pattern of 
which was identical to that of the entire 
region I1 and to that of native EBA-175 
(Table 1). 

Having identified region I1 as the parasite 
domain on EBA-175 for binding erythro- 
cytes, we next investigated the receptor 
domain on the erythrocyte for binding re- 
gion I1 of EBA-175. It was previously known 
that EBA-175 could not bind to erythrocytes 
that were treated with neuraminidase (3) or 
that lacked both glycophorin A and glyco- 
phorin B (MkMk erythrocytes) (4). The 
structure of sialic acid was critical because 
removal of the 9-0-acetyl group from the 
sialic acid of mouse erythrocytes, which 
converted the mouse sialic acid to the hu- 
man form, enhanced binding of EBA-175 
(7). However. the concentration of sialic . , 
acid (a2-3) lactose or other oligosaccharides 
containing sialic acid (012-3) required to 
inhibit the binding was 100-fold more than 
that of glycophorin A (4). Our finding that 
erythrocytes without glycophorin A 
[En(a-)] did not bind to region I1 (Table 1) 
raised the possibility that this specificity was 
not dependent on sialic acids alone, because 
En(a-) erythrocytes express glycophorin B, 
which contains the same 11 0-linked oligo- 
saccharides clustered in this region as does 
glycophorin A (13, 14) (Fig. 2A). Each 
oligosaccharide in glycophorins A and B 

contains two sialic acids linked by a2-3 and 
a2-6 glycosidic bonds. The question then 
arose: If EBA-175 recognizes sialic acid 
alone, why did En(a-) erythrocytes (which 
express sialic acid on glycophorin B) not 
form rosettes? It was possible that erythro- 
cytes that express glycophorin B, but not 
glycophorin A, could not bind region I1 of 
EBA- 175 because the copy number of glyco- 
phorin B is 10% that of glycophorin A (1 x 
lo5 and 1 x lo6 per cell, respectively) (15). 

To evaluate the relative binding efficiency 
of the glycophorins A and B, we measured 
inhibition of erythrocyte binding to region I1 
expressed on COS cells with soluble glycoph- 
orin A and glycophorin B. In one experi- 
ment, glycophorin B at a sialic acid concen- 
tration of 427 FM did not inhibit binding of 
erythrocytes to COS cells that expressed re- 
gion 11, whereas glycophorin A inhibited 
binding by 80% and 50% at sialic acid con- 
centrations of 510 FM and 255 FM, respec- 
tively. Similar results were observed when 
glycophorins A and B were used to block the 
binding of native EBA-175 to erythrocytes. 
Glycophorin A showed a 50% inhibition at a 
concentration of 52 to 64 FM sialic acid (Fig. 
2B and Table 2). The 50% inhibition con- 
centration for glycophorin B was greater than 
677 p,M sialic acid in two experiments. One 
possible explanation is that although sialic 
acids are required for binding, sialic acids are 
not sufficient for optimal binding. 

A second possible explanation for the 
differences between glycophorins A and B is 
that the single N-linked oligosaccharide at 
amino acid 26, which is present on glyco- 
phorin A but not on glycophorin B (Fig. 

Table 1. Regions II and F, bind erythrocytes with the specificity of EBA-175. All assays desqribed 
here were performed with the Camp clone of P. falciparum. Binding was scored as positive when 
COS cells covered tightly with adherent erythrocytes (rosettes) were observed (Fig. 1C). Binding 
was scored as negative when no rosettes were seen. The binding for region II was always positive 
in all 12 experiments performed, with a range of 30 to 150 rosettes per 3.5-cm well. The binding to 
F, was variable (1 0 of 17 experiments were positive), with a range of 10 to 50 rosettes per positive 
well. ND, not done. 

Binding agent 
Erythrocyte and treatment* Region F,$ 

EBA-175t Region II$ 

Human (positive for 
glycophorins A and B) 
No treatment 
Neuraminidase 
Trypsin 

Human glycophorin A-negative 
[En(a-)l 

Human glycophorin Enegative 
(S-s-U-) 

Mouse DBN2 
No treatment 
Neuraminidase 

Rhesus 
Aotus 
Guinea pig 

'Enzymatic treatments were performed as described (24). tA  + signifies that EBA-175 binds to erythrocytes; 
a - indicates no binding. The assay was performed as described (25). $A + indicates rosetting of 
elythrocytes on COS cells; a - indicates no rosetting. 
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2A) ( 2 ) ,  is required for optimal binding. 
N-Glycanase treatment of erythrocytes, 
which cleaves N-linked oligosaccharides, 
did not affect rosette formation of COS 
cells expressing region I1 nor the binding of 
EBA-175 to erythrocytes, which demon- 
strates that this N-linked sugar is not re- 
quired for binding. 

A third possible explanation for the differ- 
ences we observed between glycophorins A 
and B is that a specific peptide sequence of 
glycophorin A is also required for binding. 
Glycophorins A and B (of the blood group N 
phenotype) are identical for the first 25 amino 
acids (1 3). Any differences must occur be- 
yond amino acid 25. We therefore studied the 
ability of glycopeptides of glycophorin A (Fig. 

2A) to inhibit EBA-175 binding to erythro- 
cytes (16). This work was conducted with 
native EBA-175 instead of region I1 expressed 
on COS cells because the assays with native 
EBA-175 required much less of our limited 
supply of glycopeptides. 

Glycopeptide MCHl(1-64) inhibits bind- 
ing at sialic acid concentrations similar to 
those required by glycophorin A (Fig. 
2A and Table 2). Because glycopeptide 
MCHl(1-64) lacks the transmembrane seg- 
ment, it cannot form dimers (1 7) ;  dimeriza- 
tion is not required for binding. We next 
attempted to delineate the binding region 
within glycopeptide MCH l(1-64). With gly- 
copeptides of glycophorinA that included the 
11 NH,-terminal 0-linked sugars and single 

Fig. 2. Glycopeptide 1-64 of glyco- A MCHI (1-64) 
phorin A and glycophorin A inhibit bind- 
ing of EBA-175 to erythrocytes. (A) 
Schematic representation of glycophor- 
ins A and B with 0-linked (closed cir- 
cles) and N-linked (closed triangle) oli- 
gosaccharides on the extracellular do- ~ l ~ ~ ~ ~ h ~ r i n ~  
mains and tryptic and chymotryptic gly- 
copeptides used in EBA-175 binding 
inhibition assays. (B) lnhibition of bind- GlycophorinB 

ing of EBA-175 to erythrocytes by glyco- 
phorin A (open dots) '(performed sepa- 
rately three times) or by chymotryptic B 
glycopeptide MCHI (1-64) (closed dots) 100- 
(performed separately twice). A four-pa- 3 
rameter logistic regression function was 

75 fitted to the data by a nonlinear least = 
squares algorithm. The NLlN procedure 'i 
from the SAS library was used (22). The 50 .. . 

dotted line shows the sialic acid concen- 5 
tration giving 50% inhibition, Isolation - 
and purification of glycophorins and gly- ' 25- 

g copeptides were as described (23). P 

Sialic acid concentration (pM) 

Table 2. lnhibition of EBA-175 binding to erythrocytes. The 50% inhibition values for glycophorin A 
and glycopeptide MCHl(1-64) were derived from Fig. 2B, lnhibition of EBA-175 binding to 
erythrocytes never reached 50% for glycophorin B and other glycopeptides used, except for one 
experiment with NCH3(35-64). The values for these glycopeptides and for glycophorin B are shown 
at the highest concentration used in each individual assay. The 50% inhibition is expressed as the 
concentration of sialic acid and glycoprotein or glycopeptide (in parentheses). The concentration of 
sialic acid used was determined from a quantitative sialic acid determination (21). The concentra- 
tion of glycophorins or glycopeptides was determined from the concentration of alanine in a 
quantitative amino acid analysis, with the exception of glycopeptide MTl(1-31, 1-39), where 
calculations were based on histidine and valine. The nomenclature of glycophorin A glycopeptides 
is as  follows: M ,  blood group activity M ;  N ,  blood group activity N;  CH, chymotryptic glycopeptide; 
T, tryptic glycopeptide. 

Glycophorin or glycopeptide 50% inhibition concentration 
($4 

Glycophorin A 
Glycopeptide MCHl(1-64) 
Glycopeptide MCH2(1-34) 
Glycopeptide NCH3(35-64) 
Glycopeptide MCH2(1-34) + NCH3(35-64) 
Glycopeptide MTI (1-31, 1-39) 
Glycopeptide NT3(40-61) 

Glycophorin B 

*Glycoprotein concentration of each glycopeptide used in this mix. 
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N-linked complex chain [MCH2(1-34) and 
MTl(1-31, 1-39)] (Fig. ZA), 50% inhibition 
of EBA-175 binding was not achieved at sialic 
acid concentrations greater than 4050 pM 
and 3500 pM, respectively (Table 2). Fur- 
thermore, glycopeptide NCH3 (35-64), 
which includes the four COOH-terminal 
0-linked oligosaccharides (Fig. 2A), 
achieved 50% inhibition of EBA-175 bind- 
ing to erythrocytes only at a sialic concen- 
tration of 2308 pM, or a glycopeptide con- 
centration of 240 pM, which is almost two 
orders of magnitude more than the con- 
centration of glycopeptide MCHl(1-64) 
that is required to give 50% inhibition of 
binding. Next, a mixture of glycopeptides 
MCH2('1-34) and NCH3 (35-64) was 
studied. With this glycopeptide mixture, 
50% inhibition of EBA-175 binding was 
not  achieved at sialic concentrations 
greater than 100 p,M (Table 2). 

The fact that glycopeptide MCH1(1-64), 
but not the mixture of glycopeptides 
MCH2(1-34) and NCH3 (35-64), blocked 
the binding of EBA-175 to erythrocytes at 
sialic acid and glycopeptide concentrations 
similar to glycophorin A is the first direct 
evidence that in addition to sialic acid, the 
amino acid sequence specific for glycophorin 
A is necessary for the binding of EBA-175 to 
glycophorin A. The peptide may be involved 
in direct binding to EBA- 175 or may contrib- 
ute a unique conformation of the sialic acid 
residues. The requirement for both peptide 
and sialic acid may be similar to the binding of 
P-selectin on endothelial cells to its ligand on 
leukocytes. The binding site consists of the 
heavily glycosylated mucin domain, but the 
protein core dictates the specificity of the 
interaction (18). Sialic acid and the peptide 
sequence are also crucial for the binding of M 
and N antibodies to MN blood group antigen 
on glycophorin A. Neuraminidase treatment 
of erythrocytes destroys M and N antigenicity, 
although the molecular differences between 
blood groups M and N are determined by 
differences in amino acids at positions 1 and 5 
of glycophorin A (1 9). In all three of these 
examples, the role of the peptide in the 
interaction is unknown. 

Invasion of erythrocytes is critic21 for 
the survival of P. fakiparum. Glycophorin 
A, the erythrocyte receptor for EBA- 175, is 
required for optimal invasion by all P. 
fakiparum clones (1). Our definition of the 
receptor binding domain on EBA-175 and 
the receptor domain on glycophorin A may 
suggest rational designs for receptor-block- 
ing therapy and vaccines. 
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Structure of the RGD Protein Decorsin: Conserved 
Motif and Distinct Function in Leech Proteins That 

Affect Blood Clotting 

Andrzej M. Krezel, Gerhard Wagner,* Jana Seymour-Ulmer, 
Robert A. Lazarus* 

The structure of the leech protein decorsin, a potent 39-residue antagonist of glycoprotein 
Ilb-llla and inhibitor of platelet aggregation, was determined by nuclear magnetic reso- 
nance. In contrast to other disintegrins, the Arg-Gly-Asp (RGD)-containing region of 
decorsin is well defined. The three-dimensional structure of decorsin is similar to that of 
hirudin, an anticoagulant leech protein that potently inhibits thrombin. Amino acid sequence 
comparisons suggest that ornatin, another glycoprotein Ilb-llla antagonist, and antistasin, 
a potent Factor Xa inhibitor and anticoagulant found in leeches, share the same structural 
motif. Although decorsin, hirudin, and antistasin all affect the blood clotting proce_ss and 
appear similar in structure, their mechanisms of action and epitopes important for binding 
to their respective targets are distinct. 

Blood-sucking leeches are anatomically secrete several proteins that affect blood 
and physiologically adapted to their ecto- clotting, a complex process involving plate- 
parasitic life-style (1). Leech salivary glands let adhesion and aggregation, the coagula- 

tion and fibrinolytic systems, and the endo- 
A. M. Krezel and G. Waaner. De~artment of Biolooical thelium ( 2 ) .  Hirudin. from the leech Hir- ~ ~ -~ 
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Chemistry and ~o lec i la r  ' ~ h a r m a c o l o ~ ~ ,  ~ a & r d  udo medicimlis, poten;ly inhibits thrombin, 
Medical School, Boston, MA 021 15, USA. 
J. Seymour-Ulmer and R. A. Lazarus, Department of an imp0rtant serine protease in the 
Protein Engineering, Genentech, South San Fran- lation cascade (3). Other leech proteins 
cisco, CA 9b080, USA. that affect the hemostatic process include 
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