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Expanding the Scope of RNA Catalysis 

James R. Prudent, Tetsuo Uno, Peter G. Schultz* 
The basic notions of transition state theory have been exploited in the past to generate 
highly selective catalysts from the vast library of antibody molecules in the immune system. 
These same ideas were used to isolate an RNA molecule, from a large library of RNAs, 
that catalyzes the isomerization of a bridged biphenyl. The RNA-catalyzed reaction dis- 
plays Michaelis-Menten kinetics with a catalytic rate constant (k,,J of 2.8 x per 
minute and a Michaelis constant (I(,,) of 542 pM; the reaction is competitively inhibited by 
the planar transition state analog with an inhibition constant (4)value of -7 pM. This 
approach may provide a general strategy for expanding the scope of RNA catalysis beyond 
those reactions in which the substrates are nucleic acids or nucleic acid derivatives. 

M a n y  of the complex problems associated 
with biomolecular recognition and catalysis 
have been solved in nature by the genera- 
tion and screening of large populations of 
molecules. This can occur on an evolution- 
arv time scale or over the course of a few 
wdeks during the immune response. One of 
the first examples in which the chemical 
potential of _these processes was exploited 
was the use of transition state theorv to 
select from the tremendous diversity ot: the 
immune system antibodies with catalytic 
activities (1). More recently, a number of 
methods have been developed for generat- 
ing and screening large libraries of biologi- 
cal or synthetic molecules in vitro for their 
abilities to bind selectively or transform 
chemically a target molecule (2). 

One application of these methods has 
been the search for RNAs with previously 
unidentified activities (3). RNA has been 
shown. to efficiently catalyze reactions in- 
volving phosphoryl group transfers (4), but 
if one is to believe in a prebiotic world in 
which RNA was the primitive macromolec- 
ular catalyst, other basic chemical reactions 
should be amenable to RNA catalysis (5).  
Moreover, many of these reactions will 
require substrate binding by interactions 
other than Watson-Crick base pairing. In 
an effort to begin an exploration of the 
catalytic repertoire of RNA, we have 
screened a large library of RNA molecules 
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for the ability to bind the near-planar tran- 
sition state analog 3 and catalyze the 
isomerization of biphenyl 1 to its diaste- 
reolrier 2 (Fig. 1). 

The isomerization of substituted biphe- 
nyls is a well-characterized reaction involv- 
ing rotation around a C-C sigma bond (Fig. 
1) (6). Nonbonded interactions and angle 
strain in the planar transition state lead to a 
significant barrier to isomerization. As a 
result, isomeric substituted biphenyls can 
be isolated and interconvert quite slowly at 
room temperature. On the basis of Pauling's 
notion of enzymatic catalysis, in which 
maximum binding occurs to the transition 
state (TS*) rather than to either substrates 
or products (7),an RNA that preferentially 
binds an analog of the planar transition 
state 4 should have the potential to catalyze 
the isomerization of substrate 1 to product 
2. This reaction provides one of the sim- 
plest systems in which to test this notion 
(8); it is unlikely that any other mecha- 
nisms such as general acid-base, metal ion, 
or electrostatic catalysis would be operative 
in this reaction. 

The isomerization of the 10-membered 
ring bridged biphenyl 1 to its diastereomer 
2 was chosen as a model system. The x-ray 
crystal structure of 2 reveals a dihedral 
angle between the two aryl rings of 68" (0" 
is coplanar). The near-planar phenan- 
threne derivative 3 was chosen as a mimic 
of the planar transition state 4 because 
bridged biphenyls of this sort are known to 
have dihedral angles of -15" (9). In order 
to simplify substrate isolation and analysis 
of substrate to product ratios, we introduced 



a chiral center into the 10-membered rine 
u 

bridge to generate diastereomeric substrate 
1 and product 2. Condensation of 2,2'-
bis(bromomethy1)biphenyl (10) with the 
disodium salt of (S)-1,2-propanediolalkox-
ide, followed by chromatography on silica 
gel and recrystallization from petroleum 
ether afforded pure substrate 1 and product 
2 (11). The TSS analog 3 was synthesized 
bv oxidation of ~henathrenewith osmium 
tetroxide, acid-catalyzed condensation of 
the resulting diol with adipic aldehyde 
methyl ester, and subsequent saponification 
under basic conditions to yield racemic 3 
(12). Analog 3 was then coupled to the 
amino-derivatized cross-linked agarose sup-
port Affi-Gel 102 (Bio-Rad) through an 

amide bond to yield 5; unreacted sites were 
blocked with acetic anhydride. The loading 
density was on the order of 2.1 kmol of 
ligand per milliliter of support (13). A 
control column was synthesized by treating 
the support with acetic anhydride. 

A library of randomized RNA molecules 
was generated from a 195-nucleotide (nt) 
DNA template containing (i) a class three 
T7 promoter sequence, (ii) a 20-nt priming 
site for the polymerase chain reaction 
(PCR), (iii) a 128-nt random sequence, 
and (iv) another 20-nt priming site for 
reverse transcription and PCR amplifica-
tion of the in vitro transcripts (Fig. 2). In 
v'ltro PCR amplification of the double-
stranded DNA template and transcription 

Fig. 1. (A) isomerization reaction A 
of diastereomeric biphenyi 1 to 
product 2 with structure of the 
transition state analog 3. (B)X-ray 
crystal structure of biphenyi 2. 
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Flg. 2. Construction of RNA iibrary consisting of a 195-nt DNA template with 128 random positions. 
Two synthetic 101-nt oligonucleotides, L1 and L2, were synthesizedon an Applied Biosystems 391 
DNA synthesizer with an equimolar mixture of the four bases in 65 positions of L1 and 63 positions 
of L2. Both oligonucleotides contained the underlined Bbs I sites with complementary nonpaiindro-
mic overhangs for the ensuing ligation. The deprotectedsynthetic oligonucleotides were purified by 
eiectrophoresiswith a 6% polyacrylamide,8 M urea gel and electroelutedwith a Bio-RadModel 422 
Electro-Eluter.The oligonucleotides were converted to double-strandedform with DNA polymerase 
(Kienow fragment) and 20-nt primers complementary to the 3' end. The resulting double-stranded 
DNAs, dsl and ds2, were amplified by PCR in 20-ml reactions (100 reactions, 200 pI each). The 
amplified fragments were purified by nondenaturing poiyacryiamide gel eiectrophoresis and eluted 
from the gel in 50 mM NH40Ac (Ac, acetyi) and 10 mM Mg(OAc), with shaking overnight at 37OC 
and then precipitated.The purified fragments were digested with Bbs I, purified by gel eiectropho-
resis, and ligated with T4 DNA iigase to yield a iibrary with an approximate complexity of 4 x l o q 4  
molecules. Large-scale PCR was again used to generate multiple copies and to extend the 5' arm, 
adding in a class three promoter site for T7 transcription, The library of full-length molecules is 
designated FL1. 

SCIENCE VOL. 264 * 24 JUNE 1994 

with T7 RNA polymerase produced a 165-
nt RNA. On the basis of the amount of 
full-length DNA template obtained from 
the ligation reaction of the fragments L1 
and L2, the maximum complexity of the 
RNA pool generated is on the order of lot5 
individual sequences. In addition to the 
sequence diversity, RNAs of this size should 
have a large number of secondary and ter-
tiary structures. 

In vitro selection was carried out with 
transition state analog 5. In order to lower 
background absorption of RNA to the aga-
rose, we used an acetylated agarose precol-
umn after the first round of selection. Se-
lection was carried out by first heating a 2-
FM solution of the RNA library in a bind-
ing buffer [200 mM NaC1, 6 mM MgCl,, 
5% dimethyl sulfoxide (DMSO), and 50 
mM MES buffer (pH 5.75)] to 90°C and 
then slowly cooling it to room temperature. 
A 1-mg sample of the library was then 
passed through 2.5 ml of the affinity matrix 
followed by 10 column volumes of binding 
buffer. Bound species were then eluted with 
5 mM EDTA in water and precipitated 
(14). Precipitated RNA was reverse tran-
scribed to complementary DNA (cDNA), 
amplified by PCR, and transcribed to RNA 
with T7 polymerase; the gel-purified tran-
scribed RNA was used directly for the next 
round of selection (14). After seven rounds 
of selection (15 ) ,  the enriched RNA library 
was reverse transcribed, amplified by PCR, 
digested with the restriction enzymes Sac I 
and Bam HI, and ligated into the plasmid 
pIK-1A4 also digested with Sac I and Bam 
HI (16). Sequencing of 20 clones revealed 
that 16 had identical sequences (clone 
AA6) (Fig. 3A). The remaining four clones 
(AA1, AA4, AA10, and AA18) showed 
no obvious sequence homology to clone 
AA6 or to each other. 

In order to determine the catalytic ac-
tivity of these five clones, we performed 
large-scale runoff transcription reactions. 
The RNA product was purified by denatur-
ing polyacrylamide gel electrophoresis and 
isolated from the gel by electroelution and 
then ethanol precipitation. When the 
clones (AA1, AA4, AA6, AA10, and 
AA18) were subsequently assayed fortheir 
ability to bind the affinity support under the 
elution conditions used in the selection 
experiments, greater than 90% of clone 
AA6 bound, whereas -50% of clones 
AAlO and AA18 bound to the derivatized 
support. The remaining two clones bound 
acetylated agarose. Catalytic activity was 
then assayed in 200 mM NaC1, 6 mM 
MgC12,7% DMSO, and 50 mM MES buffer 
(pH 5.75) at 28OC by monitoring product 
appearance with high-performance liquid 
chromatography (HPLC) (17). Clone AA6 
was found to accelerate the isomerization of 
substrate 1 to product 2 above the uncata-



lyzed rate. The kinetics of this reaction 
were consistent with the simple mechanism 

in which formation of a Michaelis complex is 
followed by conversion to product and re-
lease. A Lineweaver-Burk plot (18) of the 
steady-state data afforded a kcat of 2.8 x 
min-' and a K, for substrate 1 of 542 pM; 
the value of kcat& is 5.2 x lo-' M-' 
min-'. Multiple turnovers were observed 
with no loss in catalytic activity, indicating 
that the RNA is a true catalyst. Clones AA1, 
AA4, AA10, and AA18 did not catalyze the 
isomerization reaction (nor did a random 
clone isolated from the original library). In 
addition, treatment of clone AA6 with ribo-
nuclease A abolished all catalytic activity. 
The rate of the uncatalyzed reaction (k,,,,,) 
under the same conditions was determined to 
be 3.2 x min-'. Comparison of the 
first-order rate constants kcat and kUncat for 
this intramolecular reaction afforded a rate 
acceleration of 88-fold. 

The RNA-catalyzed reaction was inhib-

lI[SI (W') 
Flg. 4. Lineweaver-Burkplot for the conversion of 
substrate 1 to product 2 catalyzed by clone AA6. 
Velocities were determined by measuring initial 
rates by high-performance liquid chromatogra-
phy monitoringat 220 nm with no inhibitor (m), 3 
FM (n),7 pM (A),or 10 pM (O),or inhibitor. 

Temperature ( O C )  

Fig. 3. (A) The most stable predicted 
secondary structure of clone AA6 (21). 
(B) Melting curve for clone AA6 in 220 
mM NaCI, 6 mM MgCI,, 5% DMSO, 
and 50 mM MES buffer (pH 5.75). 

ited bv the transition state analoe 3. The
L. 

inhibition constant (K,) was determined in 
the presence of 3, 7, and 10 pM 3 at 
varying substrate concentrations (19) (Fig. 
4). Analysis of the kinetic data revealed 
that 3 was a competitive inhibitor with Ki 
= 7 pM. Because the isomerization of 
substrate 1 requires only rotation around a 
C-C sigma bond, the preferential binding 
of RNA to the transition state relative to 
ground state should correspond to the cat-
alvtic advantage in this reaction. Accord--
ingly, KS,,/KSUncat = K,/KT = kmA/ 
kuncat (20) as defined in the scheme 

@RNA 
I 

R N A *  1 [RNA*4]*  - RNA.2 

SubstitutingKm(l)and Ki(3) for K, and KT, 
respectively, affords KIKT = 77, which can 
directly be compared with kcat/kuncat = 88. 
The similarity of these values suggests that 3 is 
a good analog of the planar transition state 
and that in this RNA-catalyzed reaction, 
binding energy is being utilized for catalysis. 
The generation of more efficient catalysts for 
this reaction will require the isolation of 
RNAs .with higher preferential affinities for 
TSS analoe 3. It remains to be seen whether 
this is possible with a polymer consisting of 
onlv four building blocks. u 

The melting temperature (T,) of clone 
AA6 was determined to be 70°C (Fig. 3B). 
The melting behavior of this clone is highly 
cooperative with no detectable intermedi-
ate species. Analysis of possible secondary 
structures for clone AA6 ~redicted the 
highly stable structure illustraied in Fig. 3A 
(21). That 16 out of 20 clones isolated had 
the identical sequence suggests that roughly 
25 nucleotides must play important struc-
tural or catalytic roles in this RNA-cata-
lyzed reaction, (22, 23). 

The experiments described above sug-

gest that even in a prebiotic world in which 
RNA may have acted as the primitive 
catalyst, the notions of transition state sta-
bilization and binding energy in catalysis 
may have been realized. This approach also 
may prove useful in generating RNAs that 
exploit proximity effects, general acid-base 
catalysis, and covalent and electrostatic 
catalysis to carry out abiological reactions 
(1). Finally, this work again illustrates the 
productive interplay between chemistry and 
biology in generating biomolecules with 
interesting functions. 
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A Low-Barrier Hydrogen Bond in the 
Catalytic Triad of Serine Proteases 
Perry A. Frey, Sean A. Whitt, John B. Tobin 

Spectroscopicproperties of chymotrypsin and modelcompounds indicatethat a low-barrier 
hydrogen bond participates in the mechanism of serine protease action. A low-barrier 
hydrogen bond between N61 of Hiss7and the p-carboxylgroup of Asp102in chymotrypsin 
can facilitate the formation of the tetrahedraladduct, and the nuclear magnetic resonance 
properties of this proton indicatethat it is a low-barrierhydrogen bond.These conclusions 
are supported by the chemical shift of this proton, the deuterium isotope effect on the 
chemical shift, and the properties of hydrogen-bonded model compounds in organic 
solvents, including the hydrogen bond in cis-urocanic acid, in which the imidazole ring is 
internally hydrogen-bonded to the carboxyl group. 

T h e  mechanism by which the catalytic 
triad in serine proteases catalyzes the hydro-
lysis of peptide bonds has long been debat-
ed. In chymotrypsin, the triad consists of 
Ser'95, His57, and Asp'02. Spectroscopic 
evidence indicates that a strong hydrogen 
bond (a low-barrier hydrogen bond or 
LBHB) links His57 and Asp1'' in the pro-
tonated state of the catalytic triad. The 
formation of an LBHB between His57 and 
Asplo2 in the course of catalysis should 
increase the reactivity of His57as a general 
base. We postulate a new mechanism in 
which the formation of this LBHB facili-
tates nucleophilic attack by the P-OH 
group of Ser195on the acyl carbonyl group 
of substrates. 

Hydrogen bonds have been classified in 
three types (1): (i) weak or conventional 
(2.4 to 12 kcal mol-I); (ii) strong or 
low-barrier (12 to 24 kcal mol-I); and (iii) 
very strong or single-well (>24 kcal 
mol-I). The potential energy wells in Fig. 1 
represent these types for a system where a 
proton between two heteroatoms is ex-
changed A-HIIIIIIB+AIIIIIH-B. An 
example of very strong hydrogen bonding is 
provided by hydrogen difluoride ([FHFI-) 
(1, 2) ,  in which the distance between 
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fluorine atoms is 2.26 A and the hydrogen 
bond enerw is 37 kcal mol-'. Low-barrier 
and single%ell hydrogen bonds may be 
reoresented as AIII H II IB. 

Strong hydrogen bonds can form when 
the distance between the heteroatoms 
(R,-,) is less than the sum of the van der 
Waals radii (<2.55 A for 0-H-0 and 
<2.65 A for 0-H-N) and the change in 
the negative logarithm of the acid constant 
(ApK,) between the heteroatoms is near 0 
(1, 3, 4). Medium effects are important 
because values for pKa are dependent on 
solvent; that is, variant pK,'s of two acidic 
groups in water may become similar in an 
organic solvent or in a crystalline state. 

The most definitive ohvsical character-. , 
ization of an LBHB is the measuremgnt of 
RA--B by x-ray crystallography or neutron 
diffraction. In most cases, however, the 
structures of oroteins are not known with 
enough accuracy to distinguish values of 
RA--Bbetween 2.5 A and 2.7 A. Of the four 
other physicochemical parameters for char-
acterizing LBHBs (1), the most unambigu-
ous is the nuclear magnetic resonance 
(NMR) chemical shift 6, for a participating 
proton, which ranges from 16 to 20 parts 
per million (ppm). Three parameters de-
oend on the effects of deuterium on the 
hydrogen bond. The isotope effect on infra-
red stretching frequencies is the ratio vAH/ 
v,,, the isotope effect on the NMR chem-
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