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ZAP-70 Deficiency in an Autosomal Recessive events associated with TCR engagement 
was observed in patients with an autosomal Form of Severe Combined Immunodeficiency recessive form of SCID (1 1, 12). In an 
accompanying paper, one such patient was 

Andrew C. Chan,* Theresa A. Kadlecek, Melissa E. Elder, 
Alexandra H. Filipovich, Wen-Lin Kuo, Makio Iwashima, 

Tristram G. Parslow, Arthur Weiss? 
Protein tyrosine kinases (PTKs) play an integral role in T cell activation and differentiation. 
Defects in the Src-family PTKs in mice and in T cell lines have resulted in variable defects 
in thymic development and in T cell antigen receptor (TCR) signal transduction. Here, three 
siblings are described with an autosomal recessive form of severe combined immunode- 
ficiency disease (SCID) in which ZAP-70, a non-Src PTK, is absent as a result of mutations 
in the ZAP-70 gene. This absence is associated with defects in TCR signal transduction, 
suggesting an important functional role for ZAP-70. 

Four cytoplasmic PTKs have been impli- phoproteins in heterologous cells (6, lo), 
cated in TCR signaling: Lck, Fyn, ZAP-70, but the role of ZAP-70 or Syk is not clear. 
and Syk (I). Biochemical and genetic stud- The function of ZAP-70 may be clarified by 
ies provide evidence for a role of the Src- studying cells deficient in its expression. 
family PTKs (2, 3). A second family of Recently, a defect in the signaling 
PTKs, consisting of ZAP-70 and Syk, also 
has been implicated in TCR signaling (4- 
9). ~ e m b e r i  of these two PTK families 
interact with the TCR sequentially (1 0). 
Both ZAP-70 and Syk are recruited to the 
phosphorylated CD3 and 5 subunits after 
TCR stimulation (3-1 0). Phosphorylation 
of CD3 and 5 requires Lck (or possibly Fyn 
in some cells), suggesting that an Src-family 
PTK plays a role upstream of ZAP-70 or Syk 
in TCR signaling (3, 9, 10). Both the Src- 
and ZAP-70-Syk-families are required for 
the efficient induction of tyrosine phos- 
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found to  have defect in ~ ~ ~ 1 7 0  protein 
expression (1 3). This prompted us to study 
an unrelated family with children that have 
a similar clinical syndrome (12) for TCR 
signaling defects and to explore the possi- 
bility that ZAP-70 mutations could account 
for this SCID syndrome. Both parents and 
one child had normal lymphocyte numbers 
and function, but three of the four children 
(two boys and one girl) had a marked 
reduction in peripheral CD8+ T cells with 
normal to elevated numbers of CD4+ T 
cells (12). The CD4+ cells failed to prolif- 
erate in response to phytohemagglutinin or 
concanavalin A (lectins that depend on 
TCR expression for mitogenic activity) or 
to CD3 monoclonal antibodies (mAbs) . 
However, normal proliferative responses 
were observed to the combination of phor- 
bol esters and calcium ionophores that 

C 
Father 

anti- 

Patient 3 
I 

Fig. 1. Lack of mobilization 
of [Ca2+], in peripheral blood 
lymphocyte (PEL) lines from 
patients with SCID. PEL lines 
derived from (A) a normal 
donor (CD8-depleted), (B) 
the mother, (C) father, or (D 
to F) the three affected sib- 
lings were loaded with 
Indo-1 and cells cross- 
linked with the CD3 mAb, 
235 (anti-CD3) (18). lonomy- 
cin (I) was also added to 
nonresponding cells to en- 
sure that cells were properly 
loaded with Indo-1. 

MO 63110, USA. 
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mimic some of the initial events induced by 
the TCR (12). These patients had normal 
natural killer cell activity and levels of serum 
immunoglobulin. Expression of TCR, CD3, 
and CD45 was normal. This phenotype sug- 
gested a potentially selective defect within 
the proximal TCR signaling pathway. 

In short-term polyclonal cell lines from 
the three affected siblings, we observed no 
substantial increase in cytoplasmic free cal- 
cium ([CaZ+],) after stimulation with either 
of two different CD3 mAbs [Fig. 1 and (1 4)]. 
This contrasted with increases in [CaZ+], in 
cells from both parents as well as in control 
cells enriched for CD4+ T cells. Because 
mobilization of [CaZ+], in response to TCR 
stimulation results from tyrosine phosphoryl- 
ation and activation of phospholipase C-y 1 

C04' 
enr~ched 

TCR Patient 1 Patlent 2 cells 
st,m: - - T 

. 1 0 6  

5 
-80 

d 

- 49 

Fig. 2. Lack of induction of cellular tyrosine 
phosphoproteins in PBL lines from patients with 
SCID. PBL lines derived from patients 1 and 2, 
or CD8-depleted cells from a normal blood 
donor, as indicated, were incubated with a 
combination of biotinylated CD3 (Leu4) and 
CD4 (Leu3) mAbs and cross-linked with avidin 
for 2 min at 37°C (lanes 1, 4, and 6) (19). 
Unstimulated cells (lanes 2, 3, and 5) were 
treated with avidin only for 2 min at 37°C. 

Fig. 3. Analysis of PTK expression. PBL lines 
from a normal donor (CD8-depleted; lane I ) ,  
the mother and father (lanes 2 and 3), and 
patients 1 to 3 (lanes 4 to 6) were lysed and 
analyzed by protein immunoblot with antibod- 
ies directed against ZAP-70, Lck, Fyn, PLC-y1 
and CD3e (20). Molecular standards are indi- 
cated on the right (in kilodaltons). 

(I), we analyzed the ability of the TCR to 
induce tyrosine phosphoproteins. In contrast 
to the responses of control cells, cross-link- 
ing of the patients' cells with CD3 mAbs 
alone or in combination with CD4 mAbs 
failed to induce substantial increases in ty- 
rosine phosphoproteins [Fig. 2 and (14)]. 
Thus, the defect appears to reside within the 
early TCR-regulated PTK pathway. 

Analysis of the PTKs implicated in TCR 
signaling demonstrated that this defect was 
associated with an absence of ZAP-70 (Fig. 
3). No ZAP-70 protein was detected with two 
different antibodies to ZAP-70 (anti-ZAP- 
70): a mAb directed against the NHz-termi- 
nal portion of ZAP-70 and a rabbit heterose- 
rum directed against a peptide derived from 
sequences between the second SH2 and cat- 

alytic domains [Fig. 3 and (14)l. Normal 
levels of the Src family PTKs, Lck and Fyn, 
were present (Fig. 3), and comparable, albeit 
normally low, levels of the Syk Pn< were 
detected in patient cells (14). 

Whereas no protein was detected, normal 
levels of ZAP-70 mRNA from the patients' 
cells were detected (14) and could be ana- 
lyzed. Two independent mutations were iden- 
tified (Fig. 4). One consists of a C to A 
transition at position 1763, resulting in an S 
to R substitution at residue 518 (S, Ser; R, 
Arg) (Fig. 4A). Serine at position 5 18 resides 
in a highly conserved region of the catalytic 
domain of human ZAP-70 and is also present 
in murine ZAP-70, human Syk, and porcine 
Syk (5,6,8). The second mutation consists of 
a 9-base pair (bp) insertion, CTTGAG- 

Fig. 4. DNA and deduced amino 
acid sequence of ZAP-70 defects 
in patient 1 and parents. (A) 
Schematic diagram of the two 
mutations found in ZAP-70 tran- 
scripts. The sequences in bold 
represent the mutated base pairs 
and the predicted amino acid 
changes. Seven different PCR 
cDNA subclones from four dis- 
tinct amplifications from patient 1 
were analyzed by standard dide- 
oxy sequencing; two contained 
the C to A point mutation and five 
contained the 9-bp insertion (21). 
(B) Sequence of the paternal- and 
maternal-derived mutant ZAP-70 
alleles. The underlined nucleo- 
tides represent the mutant and 
wild-type splice acceptor sites. 
The genomic analysis of patient 1 
and parents was as follows: pa- 
tient l :  of five clones, two con- 
tained the G to A intron mutation 
and three contained the C to A 

A 1752 A 1773 
AAG TIT TCC AGC CGC AGC GAT 
LYS Phe Ser ser A W  Se: ASD 

la42 
AAG CCC TAC AAG CTF OAO C M  AAG ATG AA4 

B L y s  P r o  Tyr Lys L.u alu aln L y s  net L y s  

Paternal mutant allele 

1749 A 1781 
CGC M G  TTC TCC AGC CGC AGC GAT GTC TGG AGC 
A r g  L y s  Phe S e r  S e r  A r g  S e r  Asp V a l  T r p  S e r  

=g 

Maternal mutant allele 

1824 
CCC TAC AAG [GCAGGCGC GGGCAGAGGC AGGTGGGCGG 
P r o  T y r  L y s  

1ntron 
TGTGGTGGGG AGGGGGATGA GGAGGAGGAC ACTGGTCACT 

A 
CACAGGTGTC TCTGCCC GG CTT QAG CAQl RAG ATG 

LOU Qlu Qln L y s  Met 

exon mutation; the mother: of six ~BSS 

clones, three were wild type and g:: Ez g;: gi iz 
three contained the intron muta- 
tion; and the father: of six clones, three were wild type and three contained the exon mutation. 

Fig. 5. Expression of mutant ZAP- A QQ r, 8%QQ D Q.OQ 70 molecules in COS-18 cells. $ 8 2  a F:,, $a&$? 
Wild-type ZAP-70 and the mutant 80- 

L- - -.- 106- 
ZAP-70 cDNAs were cotrans- 80- -1 06 
fected with human Lck into COS- 49.5- -49.5 ... -80 
18 cells that express a CD8-5 B 49.5- m a 

chimera (6). Cells were harvested a~ - -49.5 - 
at 48 hours, and cell lysates were 
analyzed by protein immunoblot 

32.5- -32.5 

with (A) anti-ZAP-70, (B) anti-Lck, 106- - "  
27.5- - -27.5 

-1 06 
or (C) anti-phosphotyrosine mAbs 8 s -  

- -80 
(4G10). (D) ZAP-70 proteins, ex- -- - A  =-- E 

49.5 -- - 
pressed in the absence of Lck, 49.5- - - 
were also immunoprecipitated, 1 2 3  4 5 6  -32.5 
analyzed for catalytic activity with 32.5- 
the use of an in vitro kinase assay 1 2  3 4 5 6  

( 4 ) ,  and (E) analyzed for the amount of ZAP-70 present in each immunoprecipitate. Wild-type 
ZAP-70 is represented in lanes 1 and 4, the paternal mutant consisting of a C to A change is 
represented in lane 2, the maternal mutant consisting of a 9-bp insertion is represented in lanes 3 
and 5, and the 13-bp deletion from the accompanying paper (13) is represented in lane 6. 
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CAG, and results in the addition of LEQ 
within the catalytic domain (L, Leu; E, Glu; 
Q, Gin). Analysis of partial genomic DNA 
clones derived from patient 1 demonstrated 
that these mutations are expressed on differ
ent chromosomes. The insertion is due to a G 
to A transition within an intron 9 bp up
stream of the normal splice acceptor site (Fig. 
4B). This mutation results in a more favored 
splice acceptor site, AGC, rather than AGA 
(15). Analysis of six partial genomic DNA 
clones derived from the parents demonstrated 
that they were each heterozygous, each parent 
expressing a wild-type and one mutant allele. 
The mutation giving rise to a new splice 
acceptor site was derived from the mother, 
and the C to A transition within the exon was 
derived from the father. Analysis of a rodent-
human hybrid chromosome library and fluo
rescent in situ hybridization (FISH) demon
strated that ZAP-70 maps to chromosome 
2ql2 (16), consistent with the autosomal 
recessive nature of the defect. 

We examined the significance of these 
mutations on protein expression and func
tion. The mutant ZAP-70 molecules identi
fied here, as well as a mutant resulting from a 
13-bp deletion in an unrelated patient with 
similar T cell phenotypic and functional de
fects (J 3), were expressed in COS cells (Fig. 
5). Expression of the three mutant alleles in 
COS cells resulted in lower levels of ZAP-70 
protein despite higher levels of mRNA as 
compared with wild-type ZAP-70 [Fig. 5A 
and (14)]. The most notable decreases were 
observed with the 9-bp insertion and the 
13-bp deletion. These were expressed as lower 
relative molecular weight forms of ZAP-70 
and are likely to result from proteolytic cleav
ages of the mutant proteins that were not 
observed within the patient's cells. This may 
reflect more rapid turnover of these proteins 
in T cells as compared with their overexpres-
sion in COS cells. In vitro kinase assays 
revealed that all three mutant forms of ZAP-
70 were catalytically inactive (Fig. 5, D and 
E). Whereas cotransfection of ZAP-70 with 
Lck or Fyn into COS cells that stably express 
a CD8-£ chimera (COS-18) results in an 
induction of tyrosine phosphoproteins (5, 
JO), cotransfection of these ZAP-70 mutants 
with Lck resulted in fewer tyrosine phos
phoproteins (Fig. 5C). 

The distinct mutations in ZAP-70 in our 
patients and in the unrelated female patient 
described in the accompanying paper (13) 
are likely to represent the underlying mo
lecular defect in this form of SCID pheno-
type. Taken together, these two unrelated 
families with this autosomal recessive form 
of SCID provide strong genetic evidence for 
the functional importance of ZAP-70. The 
induced association of ZAP-70 with the 
TCR subunits after receptor engagement 
previously implicated ZAP-70 in TCR signal 
transduction (4-7, 9, 10). Here, we suggest 

that the absence of functional ZAP-70 PTK 
gives rise to an immunodeficiency character
ized by defects in TCR signal transduction. 
This is consistent with our studies in COS 
cells in which substitution of a kinase-inac-
tive mutant for wild-type ZAP-70 that was 
coexpressed with a wild-type Src-family PTK 
resulted in the loss of tyrosine phosphoryla
tion of cellular proteins (JO). 

The related PTK Syk has been implicated 
in TCR signaling (6, 8). Syk can associate 
with the stimulated TCR complex (6), rais
ing the possibility that Syk may serve a 
redundant function in TCR signaling. ZAP-
70 and Syk are expressed in both CD4+ and 
CD8+ T cells (6). However, the level of Syk 
protein in T cells is about one-twelfth that 
expressed in B cells (6). The inability of the 
SCID patient's CD4+ T cells to signal sug
gests that this level of Syk expression is not 
sufficient to replace ZAP-70 function in 
TCR signaling in peripheral T cells. 

TCR signal transduction plays an impor
tant role in T cell development. The ability 
of CD4+ but not CD8+ T cells to accumu
late in the periphery of these SCID patients 
raises questions regarding the role of ZAP-
70 in T cell development. ZAP-70 and Syk 
are expressed in all the major (CD4~-
CD8", CD4 + CD8 + , and CD4+CD8"-
CD4~CD8+) thymocyte populations, sug
gesting that both of these PTKs may play a 
role in TCR-regulated developmental deci
sions (6). Syk is present at fourfold higher 
levels in thymocytes than in peripheral T 
cells (6). In the absence of ZAP-70, Syk 
may play a preferential role in regulating 
the positive selection of CD4+ T cells. 
Development of the CD4+ lineage may be 
favored, perhaps as a result of the stronger 
association of Lck with CD4 relative to 
CD8 (17). Collectively, our studies and 
those of others (22) provide strong genetic 
evidence for the function of ZAP-70 in T 
cell development and activation through its 
involvement in TCR signal transduction. 
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