
chronic defect in remnant clearance) also 
have substantially lower HDL cholesterol 
concentrations than normal animals, sug-
gesting a functional connection between 
HDL and remnant metabolism. 

In conclusion, the results presented in 
this study provide additional evidence for a 
physiological dual role of LRP in the me-
tabolism of lipoproteins and proteases. Fur-
thermore, our results have demonstrated 
the usefulness of adenovirus-mediated gene 
transfer to overexpress a dominant negative 
regulator and to study the physiological 
consequences of the transient inactivation 
of the target protein in an intact animal. 
Such an approach may be generally appli-
cable for the in vivo inactivation and study 
of other developmentally essential genes 
(such as growth factors, signaling receptors, 
or transcription factors) for which domi-
nant negative mutants or antagonists exist. 
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De Novo and lnherited Deletions of the 5q13 
Region in Spinal Muscular Atrophies 
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Spinal muscular atrophies (SMAs) represent the second most common fatal autosomal re-
cessive disorder after cystic fibrosis. Childhood spinal muscular atrophies are divided into 
severe (type I) and mild forms (types I I  and Ill). By a combination of genetic and physical 
mapping, a yeast artificial chromosome contig of the 5q13 region spanningthe disease locus 
was constructedthatshowedthe presenceof lowcopy repeatsinthis region.Allele segregation 
was analyzed at the closest genetic loci detected by markers C212 and C272 in 201 SMA 
families. lnherited and de novo deletions were observed in nine unrelated SMA patients. 
Moreover,deletionswere strongly suggested in at least 18 percent of SMA type Ipatients by 
the observationof marked heterozygositydeficiencyfor the loci studied.These resultsindicate 
that deletionevents are statisticallyassociatedwiththe severeform of spinal muscular atrophy. 

Proximal spinal muscular atrophies (inci-
dence: 1 out of 6000 newborns) (1-4) are 
characterized by degeneration of anterior 
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horn cells of the spinal cord, leading to 
progressive symmetrical limb and trunk pa-
ralysis associated with muscular atrophy. 
The childhood spinal muscular atrophies 
are divided into types I (Werdnig-Hoff-
mann disease), 11, and I11 (Kugelberg-We-
lander disease) on the basis of age of onset, 
milestones of development, and life span 
(5). By means of linkage analysis, we and 
others have shown that all three forms of 
spinal muscular atrophy map to chromo-
some 5q11.2-q13.3 (6-9). 
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We have recently identified two DNA 
markers flanking the SMA gene at loci 
D5S629 and D5S637 (1 0). This interval [2 
centimorgans (cM)] was cloned into a 4-Mb 
yeast artificial chromosome (YAC) contig 
spanning the disease locus by YAC chro- 
mosomal walking [Fig. 1A and (I I)]. 
Among the 28 DNA markers derived from 
the YAC contig, 9 also mapped to chromo- 
some 5p, suggesting partial duplication of 
the 5q13 region on chromosome 5p. More- 
over, nine markers mapped to more than 
one locus within the 5q13 region, indicat- 
ing the presence of low copy repeats on 
chromosome 5q13 (12). Indeed, taking ad- 
vantage of DNA polymorphisms, we ob- 
served that four of them revealed two loci 
[C212 (D5F149S1, -S2), C272 (D5F150S1, 
-S2), C271 (D5F148S1, -S2), and C171 
(D5F151 Sl,  -S2)] and one of them three 
loci [C161 (D5F153S1, -S2, -S3)] on the 
monochromosomal hybrid HHW 105 (1 3). 

Haplotype analysis and homozygozity 
mapping of 10 SMA families, to identify 
recombinant events between the disease 
gene and the flanking loci D5S629 or 

D5S637 (1 0) , was done with polymorphic 
DNA markers derived from the YAC contig 
(14). No recombination event was detected 
between the most polymorphic loci identi- 
fied by markers C212 and C272 and the 
SMA locus, indicating that these markers 
are close to the disease gene. 

To test the hypothesis that the low copy 
repeats of the 5q13 region might trigger 
large-scale chromosomal rearrangements, 
we analyzed the allele segregation at loci 
recognized by markers C212 and C272 in 
201 nonconsanguineous SMA families 
(15). The absence of one parental allele at 
these loci was observed in eight affected 
children from seven unrelated SMA fami- 
lies. Four children had type I, two had type 
11, and two had type 111 spinal muscular 
atrophy (Fig. 2). A de novo rearrangement 
involving one of the two loci detected by 
C272 and C212 was observed in the chro- 
mosome of one SMA type I patient (Fig. 2, 
family 7). We obtained consistent results by 
using different pairs of oligonucleotide 
 rimers for both markers. False ~aternitv or 
missampling was ruled out by complete 
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Fig. 1. YAC contig spanning the SMA region and genetic map of deletions in SMA patients. (A) 
Organization of the YAC contig. DNA markers and YACs are indicated above and below the 
genomic map, respectively. Brackets covering the clusters C212-C272-C171 indicate that the order 
of markers within the centromeric and the telomeric clusters is unknown. D-segments are in 
parenthesis; asterisks indicate chimeric YAC clones. Cent., centromere; Tel., telomere. The 
numbers above the YAC map indicate, the genotypes at polymorphic loci C161, C212, C272, and 
C171. To confirm the extension of the YAC contig over the entire region, we used the two loci 
detected by each of the polymorphic microsatellite markers C212, C272, and C171 and the three 
loci detected by polymorphic marker C161 to compare the haplotype of the YAC clones with that of 
the human donor. YAC 759A3 was not allelic to 595C11, and YAC 79883 was allelic to 903D1 at the 
telomeric locus detected by marker C161. The position of these markers in the YAC contig was in 
agreement with the genetic cartography of the chromosomal deletions. (6) Genetic map of 
deletions in SMA patients. In family 7, the deletion involves either the centromeric or the telomeric 
block C212-C272-C171. 

haplotype analysis of the families. No ab- 
normal allelic segregation was observed 
with polymorphic flanking markers (1 6). 
These results suggest that a rearrangement 
occurred on one mutant chromosome 
which encompassed the disease gene in 
seven unrelated patients. 

Because the number of patients harbor- 
ing rearrangements may have been under- 
estimated by lack of informativity, the 
number of distinct C212- and C272-specific 
polymerase chain reaction (PCR) fragments 
was analyzed in our SMA series and in 
controls [Fig. 3 and (17)l. A total of 16 out 
of 90 (18%) type I patients had one single 
C272 amplification product, compared with 
1 out of 81 (I%), 1 out of 30 (3%), and 0 
out of 59 (0%) in type 11, type 111, and 
controls, respectively (P < 0.001). Accord- 
ingly, the proportion of SMA type I pa- 
tients bearing two C272 amplification prod- 
ucts (55190; 61%) also significantly differed 
from that of parents (691180; 38%) and 
controls (12159; 20%, P < 0.001). Similar 
results were obtained with marker C212 
(1 7). Subsequently, 20 SMA type I families 
whose probands had a single amplification 
product, as determined with markers C212 
or C272, were further analyzed with marker 
C161. In 2 out of 20 families, a de novo 

0 0  0 @ 
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Fig. 2. Parental allele contribution in SMA pa- 
tients as determined by microsatellite DNA 
markers C212 and C272. The figure shows 
family studies based on marker C272 (families 
1, 2, 5, and 7b) and C212 (families 3,4,  6, and 
7a). The SMA patients belonged to type I (fam- 
ilies 3, 5, 6, and 7), type I I  (families 1 and 2), or 
type I l l  (family 4). The parental noncontribution 
is of paternal origin in families 1 and 2 and of 
maternal origin in families 3, 4, 5, and 6. In 
families 4 and 5, the nonaffected siblings (NA) 
are heterozygous for the disease locus as de- 
termined by flanking markers (16). In family 7, 
note the incomplete contribution of the father to 
his affected child with C212 (7a) and C272 (7b) 
compared with the haploidentical fetus (Fe) 
with flanking markers (16). F, father; M,  mother; 
A, affected; NA, nonaffected; Fe, fetus. Dots 
indicate allelic fragments. 
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Number of distind PCR amplification products 

Fig. 3. Number of amplification products revealed by marker C272 in SMA patients, parents, and 
controls. A total of 90 type 1 ,  81 type I I ,  and 30 type I l l  SMA probands, their parents, and 59 controls 
were investigated. We ruled out the possibility that heterozygosity deficiency was due to distant 
consanguinity, because the estimation of shared fragments in the parents of SMA patients was not 
statistically different from that observed in 20 unrelated control families. +, affected; m, parents; A, 
controls. 

rearrangement removing two out of three 
loci detected by marker C16 1 was observed 
(Fig. 4, families 8 and 9). These results 
support the idea that heterozygosity defi- 
ciency in type I spinal muscular atrophy is 
due to loss of alleles at these loci. 

To characterize the extent of the 5q13 

F M A  F M A  F M A  

Fig. 4. Evidence for de novo deletions seen 
with microsatellite DNA marker C161 in SMA 
type I patients. (A) Segregation of alleles de- 
tected by marker C272 shows no evidence 
either for or against a deletion in families 8, 9, 
and 10. Note that the patients have a single 
amplification product. (B) Segregation of al- 
leles revealed by marker C161 detects de novo 
deletions in families 8 and 9, as the proband 
inherited only one locus from both parents 
(family 8) or from the father (family 9). In family 
10, the detection of six PCR amplification prod- 
ucts in the proband excludes a deletion encom- 
passing the three loci detected by C161. F, 
father; M, mother; A, affected. Dots indicate 
allelic fragments. 

region involved in the rearrangements, we 
tested all polymorphic DNA markers de- 
rived from the YAC contig (14) in SMA 
families showing evidence for abnormal pa- 
rental contribution (Fig. 1B). The smallest 
rearrangement occurred within the region 
bordered by loci detected by C161 and 
C212-C272-C171, suggesting that the 
SMA locus lies within a 1.2-Mb region - 
(Fig. 1). However, because of sequence 
identity of the regions flanking the C212- 
C272 CA-repeats, we were unable to deter- 
mine which of the two loci was lacking in 
the proband harboring a single locus rear- 
rangement (Figs. 1B and 2, family 7). 

A X phage library of YAC 595C11 was 
constructed and clone L-132, containing 
the C272 marker, was used as a probe for 
Southern (DNA) blot analysis of SMA 
families showing abnormal parental contri- 
bution (18). Gene dosage and restriction 
fragment length polymorphism (RFLP) 
analysis indicate the presence of either in- 
herited or de novo deletions (Fig. 5). 

Our study provides direct genetic and 
physical evidence for large-scale deletions 
encompassing the disease locus in nine 
unrelated SMA patients. Moreover, the 
presence of deletions of the 5q13 region is 
supported by heterozygosity deficiency sta- 
tistically associated with the severe form of 
spinal muscular atrophy (type I). Deletions 
were occasionally observed in type I1 or 
type 111 SMA patients, suggesting that dis- 
tinct allelic mutations might account for 
the variable clinical expression of the dis- 
ease and confirming that the gene or genes 
for all three forms map to the same region. 
Duchenne and Becker muscular dystrophies 
can also result from gene deletions, but in 
these cases a mechanistic difference in the 
types of the deletions has been found (1 9), 
whereas no such data is available for spinal 
muscular atrophy. 

.This study also demonstrates that dele- 
tions can occur de novo, a feature that 
might account for the low segregation ratio 
in spinal muscular atrophy (20, 21). De 
novo deletions of the 5q13 region might 

A 0 0 0 0 
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Fig. 5. Gene dosage and RFLP analysis of the 
5q13 region with the L-132 phage clone in SMA 
type I patients. Total human DNA from SMA 
families showing a lack of allele contribution 
from one parent were digested with either Eco 
RI (families 6 and 7) or Xba I (families 3 and 5). 
Filters were consecutively hybridized with 
L-132 (A) and JK53 probes (B). Gene dosages 
were determined by densitometric scanning of 
the hybridization signals in families 3, 6, and 7. 
In family 6, both the mother and the affected 
child had a 50% reduction in band intensity, 
which indicates that the deletion was inherited. 
A significant decrease in L-132 band intensity 
was observed in the probands of families 7 and 
3 compared with their parents, which indicates 
that the deletions were de novo. In family 5, Xba 
I RFLP analysis showed that the proband had 
not inherited the maternal allele. 

also account for the apparent genetic het- 
erogeneity of the disease (8, 22) when 
normal and affected siblings share common 
haplotypes using flanking markers. This 
observation is also relevant to genetic coun- 
seling. Reliance on haploidentity of a fetus 
and an affected sibling determined by flank- 
ing markers might lead to prenatal misdiag- 
noses when a de novo deletion is involved. 

The YAC contig reported here contains 
all known repeated sequences of the 5q13 
region and shows that the size of the region 
encompassing the disease locus is substan- 
tially larger than previously reported (23, 
24). The presence of low copy repeats on 
chromosome 5q13 may account for the in- 
stability of this region and trigger frequent 
deletions by means of unequal crossing-over 
events in spinal muscular atrophy. Finally, 
the characterization of the smallest deletions 
in spinal muscular atrophy will contribute to 
identification of the disease gene or genes. 
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