
smaller branching pocilloporid corals, 
which preceded elkhorn and staghorn cor- 
als in the same environments, persisted 
alongside the latter for nearly 2 million 
years before finally going extinct about 120 
thousand years ago (19). Thus, modern 
Caribbean reef communities did not de- 
velop until at least 1 million years after the 
origin of the crucial species involved. 

Why do such profound delays occur in 
the origin of novel communities? One  pos- 
sibility is that gradual evolution due to 
some process such as "neighborhood selec- 
tion" slowly facilitates positive interactions 
among coexisting species that alter commu- 
nity structure (20). Alternatively, domi- 
nance by a few species that share a particu- 
lar suite of characteristics may emerge as an  
epiphenomenon of local threshold effects 
(21) and regional metapopulation dynam- 
ics (22) that "lock" species associations 
into a limited number of states, once abun- 
dances somehow rise above certain critical 
levels. For example, staghorn and elkhorn 
corals grow up to 10 times faster than other 
Caribbean corals (8), which may have 
greatly increased their success relative to 
other branching species when glacial cycles 
and sea-level fluctuations intensified sub- 
stantially about 1.0 to 1.4 million years ago 
(23). In the latter case, the success of these 
newly dominant corals is an accidental side 
effect of characters selected for other rea- 
sons rather than an  adaptation to their pre- 
sent circumstances. The  apparently punctu- 
ated evolution of most marine species (24) 
argues for the latter interpretation, except 
that life history traits and behaviors rarely 
fossilize, so it may be impossible to tell. 

Paleoecologists need to pay more atten- 
tion to the relative abundance of species if 
we are to resolve the issue of how much 
community structure is more than just the 
sum of the component species parts. But 
whatever the outcome, paleontology con- 
ticues to contribute fundamentally to eco- 
logical and evolutionary theory, be it 
through the discovery of punctuated evolu- 
tion of species or synchronous turnover of 
entire biotas, or the demonstration of the 
broadly open structure of marine communi- 
ties. Paleontology still provides the only 
empirical test of the history of life and 
models of global change. 
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A Biochemical Function 
for Ras-At Last 

Alan Hall 

R a s ,  a guanosine triphosphatase (GTPase), 
is a molecular switch for signal transduc- 
tion pathways that control growth and dif- 
ferentiation. Its critical importance in 
growth control was known since the early 
1980s when activated ras oncogenes were 
identified in certain human cancers (1). 
More recently, elegant genetic experiments 
in yeast, Caenorhabditis elegans, and Dro- 
sobhih have established a universal func- 
tion for Ras in controlling a cell's decision 
to grow or to differentiate (2). Tremendous 

u . . 
effort has gone into characterizing the 
mechanism of action of this critical mol- 
ecule. Like all GTP-binding proteins, Ras 
cycles between an  inactive [guanosine di- 
phosphate (GDP)-bound] and an  active 
(GTP-bound) conformation, and a wide 
variety of extracellular signals can stimulate 
the formation of active Ras:GTP (3). The  
downstream function of Ras is to regulate a 
protein kinase cascade (4); two reports this 
week, one in Science from Hancock's group 
and another in Nature from Marshall's 
group, have finally pinned down exactly 
how Ras does this (5, 6). 

The author is at the Medical Research Council Labora- 
tory for Molecular Cell Biology and Department of Bio- 
chemistry, University College London, Gower Street, 
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In all eukaryotic cells so far examined 
(except Saccharomyces cereuisiae), Ras con- 
trols a mitogen activated protein (MAP) 
kinase cascade (4). After many false candi- 
dates came and went, it was eventually re- 
alized that stimulation of Ras invariablv 
leads to an  increase in the activity of two 
cvto~lasmic serine-threonine MAP kin- , L 

ases, Erk-l and Erk-2, which subsequently 
translocate to the nucleus where thev ~ h o s -  , & 

phorylate key transcription factors such as 
elk (7). Unraveling the sequence of events 
that connects Erk-l and -2 to Ras has, up 
to a point, been a relatively straightfor- 
ward problem in protein biochemistry. 
MAP kinase activity depends on  concomi- 
tant phosphorylation of a threonine and a 
tyrosine residue by a dual specificity kinase, 
MAP kinase kinase (MAPKK). MAPKK is 
itself activated by pho~phor~la t ion ,  and a 
number of MAPKK kinase activities have 
been detected in cell extracts. 

One protein that clearly functions as a 
MAPKK kinase is Raf (8). This serine- 
threonine kinase was first characterized 
by Ulf Rapp's lab as the product of the u- 
raf retroviral oncogene, and in 1986 some 
elegant microinjection experiments by 
Stacey's group showed that transformation 
of cells by v-Raf is independent of Ras (9). 
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Stacey speculated then that the c-Raf kinase is activated 
Raf might be downstream after translocation to the 
of Ras in a signal transduc- membrane; an observation 
tion pathway. It turns out in the Hancock paper may 
he was right. be relevant. These authors 

Closer inspection of v- find that neither RafCAAX 
Raf reveals that it is derived nor c-Raf that has been in- 
from the c-raf proto-onco- duced to translocate to the 
gene by deletion of amino- plasma membrane by acti- 
terminal sequences (10). It vated Ras can be solubilized 
is likely, therefore, that the with the detergent 1% NP- 
activity of the c-Raf kinase 40. This result indicates 
domain (located at the car- that, after moving to the 
boxyl terminus) is regulated membrane, c-Raf (but not 
by sequences in the amino- Ras) becomes tightly associ- 
terminal domain. Last sum- ated with the cytoskeleton. 
mer, it seemed that five Both cytosolic and mem- 
groups had simultaneously brane-bound c-Raf are found 
found the final piece of the Ras is a membrane targeting signal for c-Rat. Extracellular signals activate Ras, in a large (300- to 500-kilo- 
puzzle when they reported and in this GTP-bound form, the effector region of Ras interacts with the amino-ter- dalton) complex that in- 
that Ras physically inter- minal regulatory domain of C-Raf, localizing this MAPKK kinase to the plasma mem- cludes two chaperones, 
acts with the amino-termi- brane. c-Raf then dissociates from Ras and stays at the membrane in a detergent- hsp90 and p50, and possibly 

insoluble complex that may be associated with the cytoskeleton and includes chap- 
nal domain of c-Raf in a erones and perhaps MAPKK. MAPKK (15). 1 am sure 
GTP-dependent manner there will now be a con- 
( I  1 ). The excitement was slightly tempered nase? Kinases are effective on-off switches, certed effort to identifj proteins that inter- 
when attempts to activate recombinant c- but a GTPase such as Ras may be a more act with c-Raf at the plasma membrane, 
Raf with Ras in vitro failed-something sensitive sensor of the extracellular mi- and this may provide the final piece in the 
critical was still missing from the pathway. lieu--effectively functioning as a rheostat. biochemical puzzle that links growth factors 
We still do not know what that something Indeed, in PC12 cells activation of Ras by to the MAP kinase cascade. 
is, but the papers from the Hancock and epidermal growth factor causes prolifera- 
Marshall labs have at least now identified tion, but activation of Ras by nerve growth References and Notes 
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