
phase, despite the apparent correct band 
filling and suitable interfullerene spacing. It 
appears that the orientational state of the 
fullerenes and the intercalate-carbon inter- 
action subtly control the pair-binding mech- 
anism in the fullerides. 
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Critical Behavior in the Satisfiability of Random 
Boolean Expressions 

Scott Kirkpatrick and Bart Selman 
Determining the satisfiability of randomly generated Boolean expressions with kvariables 
per clause is a popular test for the performance of search algorithms in artificial intelligence 
and computer science. It is known that for k = 2, formulas are almost always satisfiable 
when the ratio of clauses to variables is less than 1 ; for ratios larger than 1, the formulas 
are almost never satisfiable. Similar sharp threshold behavior is observed for higher values 
of k. Finite-size scaling, a method from statistical physics, can be used to characterize 
size-dependent effects nearthe threshold. A relationship can be drawn between thresholds 
and computational complexity. 

Properties of randomly generated combina- 
torial structures often exhibit sharp thresh- 
old phenomena. A good example can be 
found in random graphs. A graph is defined 
as a set of points (vertices) in space with 
lines (edges) connecting pairs of vertices. A 
random graph is generated by randomly 
selecting pairs of vertices to be connected 
by edges. Erdos and R6nyi (1) showed that 
many properties of random graphs can be 
predicted with a very high accuracy. Con- 
sider the sizes of connected clusters. A 
connected cluster is a group of vertices 
where, starting at an arbitrary vertex, one 
can reach any other vertex in the group by 
traversing one or more edges in the graph. 
It is intuitively clear that the more edges in 
the graph, the more vertices will be inter- 
connected and the larger the clusters will 
be. What is surprising is that gradually 
increasing connectivity leads to sudden 
changes in the distribution of cluster sizes. 

Let N be the number of vertices and M 
be the number of edges. If we make N and 
M large but hold their ratio a MIN 
constant, then we can identify two regimes: 
When a < 112, many small isolated clusters 
of maximum size In N are found; when a > 
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112, a single giant component with size 
proportional to N absorbs many of the 
clusters. At the boundary between the two 
regimes, when a has its critical value a, = 
112, the largest clusters are proportional to 
N2". Subsequent work (2 ,  3) has made 
precise the sharpness of the threshold: Its 
characteristics persist across a range of a of 
order N-lf3 about a, = 112. This is now 
recognized as the prototype of "percolation" 
phase transitions studied in simple models 
of real inhomogeneous materials, which 
change sharply from nonconducting to con- 
ducting on macroscopic scales as a local 
measure of connectedness increases (4). 
We shall use this well-understood model to 
test techniques for the identification of 
critical phenomena in less understood com- 
binatoric structures. 

Threshold phenomena have recently 
been observed in randomly generated Bool- 
ean expressions or formulas. Mitchell et al. 
(5) considered the k-satisfiability problem 
(k-SAT). An instance of k-SAT is a Bool- 
ean formula in a special form, called con- 
junctive normal form (CNF). An example 
of such a formula is (x V y) A (2 V y) A (x 
V y), where x and y are Boolean variables 
and A, V, and the overbar are logical 
operators denoting, respectively, AND, 
OR, and NOT. 

Each Boolean variable can be assigned 
either true or false. Depending on the 
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Fig. 1. (A) The ratio of the size of the second largest cluster to that of the out. (B) Rescaled cluster data (from top to bottom, the curves correspond 
largest cluster plotted against a for several values of N. We analyzed to k = 2 to 5). 
10,000 samples for each data point, giving roughly 1 % accuracy through- 

values assigned to the variables, the formula 
as a whole evaluates to either true or false. 
For example, if we assign x to true and y to 
false, each clause, and therefore our whole 
formula, evaluates to true. Each disjunction 
(logical OR), such as (x V y), is called a 
clause. A k-CNF formula consists of a col- 
lection of such clauses, each containing k 
variables, joined by conjunctions (logical 
ANDs). We use N to denote the total 
number of Boolean variables, and M the 
number of clauses. So, our example formula 
has k = 2, N = 2, and M = 3. In a randomly 
generated formula, each clause is generated 
by randomly selecting k distinct variables 
froin the set of N variables or their negations 
(logical NOT). The problem is to determine 
whether there is an assignment to the vari- - 
ables such that all clauses evaluate to true, in 
which case the formula is called satisfiable. 
The values of M, N, and their ratio a define 
the scale and natural parameters of this 
problem just as in the random graph model. 

For randomly generated 2-SAT instances, 
it has been shown analvticallv that for large 
N, when the ratio a <' 1, thk instances are 
almost all satisfiable, whereas for a > 1, 
almost all instances are unsatisfiable (6, 7). 
For k 2 3, a rigorous analysis has proven to 
be elusive. Loose umer and lower bounds 

L A  

have been obtained, but there is yet no 
rigorous proof of the existence of a threshold 
(8). Experimental evidence, however, 
strongly suggests a threshold with a = 4.2 
for 3-SAT (5, 9, 10). 

One of the main reasons for studying 
randomly generated CNF formulas is for 
their use in the empirical evaluation of 
combinatorial search algorithms (1 0-1 2). 
Formulas with k = 3 (3-CNF) are good 
candidates for the evaluation of such algo- 
rithms because determining their satisfiabil- 
ity is an NP-complete problem (1 3), a mem- 
ber of a class of problems that can easily be 
transformed into one another yet for which 
no efficient (polynomial time, rather than 
exponential) algorithm for their exact solu- 
tion is known. For k > 3, k-SAT remains 
NP-complete. For k = 1 or 2, the satisfiabil- 
ity problem can be solved efficiently (1 4). 

One has to be careful in the use of 
randomly generated formulas: Simple heuris- 

tic methods can often quite easily determine 
the satisfiability of most such formulas. This 
has led to some overly strong claims in the 
literature about the handling of very large 
formulas. Computationally challenging test 
instances can be obtained with high proba- 
bility by generating formulas at or near the 
threshold (5). Cheeseman et al. (1 5) made a 
similar observation of increased computa- 
tional cost for heuristic search at a boundarv 
between two distinct phases or behaviors of a 
combinatorial model. 

We provide here a precise characteriza- 
tion of the dependence on N of the thresh- 
old phenomena for k-SAT with k ranging 
from 2 to 6. Our analysis shows that the 
threshold in k-SAT closely resembles the 

a 
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Fig. 2. Fraction of unsatisfiable 
Boolean expressions for k-SAT 
(from left to right, the groups of 
curves correspond to k = 2 to 6) 
for N from 12 to 50, typically av- 
eraged over 10,000 samples for 
roughly 1 % accuracy. The curves 
sharpen up with increasing N at 
each k. Values of N were (for k = 
2 through 4) 12, 24, and 50; (for k 
= 5 and 6) 12, 20, and 40. The 
arrows mark a,,,. 



Fig. 3. (A) Threshold data for 3-SAT, N = 12 to 100. Arrow marks ol,,,. Both the crossing point of the curves at large N, and then v is chosen to make the 
the threshold shift and the increasing slope in the curves can be accounted slopes match up though the critical region). (C) Rescaled 4-SAT data with 
for by finite-size scaling. (B) Rescaled 3-SAT data with a, = 4.17 and v = a, = 9.75 and v = 1.25 lead to a tighter fit to a single curve. The critical 
1.5, which are determined from experimental data (first, a, is determined as parameters from this analysis are given in Table 1. 

phase transition studied in spin glasses (1 6). 
We use finite-size scaling (4, 17), a method 
from statistical physics in which the obser- 
vation of how the width of a transition 
narrows with increasing sample size gives 
direct evidence for critical behavior at a 
phase transition. We first illustrate the fi- 
nite-size scaling approach on random graphs. 

The empirical observation behind phe- 
nomenological scaling is that sufficiently 
close to a threshold or critical point, systems 
of all sizes are indistinguishable except for an 
overall change of scale. In the random graph 
ensemble, the clusters of size NZJ3 that occur 
close to its threshold in a random graph with 
N ,= 100 should simply look like coarse 
versions of the clusters found in a graph with 
N = 10,000. However, to make the com- 
parison, the narrow threshold observed for 
very large graphs must be expanded in scale 
to compare it with the broader threshold 
seen in small graphs. In the random graph 
ensemble, we know exactly how to do this. 
Correcting for the known N-'I3 dependence 
of the width and normalizing a to its thresh- 
old value a,, we define a rescaled parameter 
y = N"32(a - 112) against which to plot 
data for a graphical analysis. 

But what to plot? A well-behaved quan- 
tity for this problem proves to be the sizes of 
the larger clusters, normalized to the size of 
the largest cluster in the same graph. When 
a is small, all clusters should be of the same 
general magnitude, so these ratios tend to 
unity. For a % 112, normalization by the 
size of the giant cluster makes all the ratios 

tend to zero. Let L,. denote the size of the 
'k-th largest cluster found in a particular 
graph, and () represent averaging over many 
samples of graphs with the same M and N. 
Curves of (Lz/Ll) plotted against a (Fig. 1A) 
show the sharpening of the transition with 
increasing N ,  and all intersect at the critical 
point a = 112. Plotting them against y (Fig. 
IB), we find that the averaged normalized 
cluster sizes follow universal forms through 
the critical regions, only separating when 
Ivl > 1. The values of the size ratios at the 
8- 8 

critical point are insensitive to N: They are 
(L,/L,) = 0.538 & 0.0015, (L3/Ll) = 0.382 
& 0.001, (L,/Ll) = 0.302 & 0.0006, and 
(L5/Ll) = 0.252 k 0.0006 (averaged over 
160,000 samples at each N ) .  

It is surprising that finite-size scaling 
works here because the standard heuristic 
derivations (4, 17) explain the size depen- 
dence of a crossover between two ~hases as 
a measurement of a correlation length 5, 
which diverges at the critical ~ o i n t  in an - 
infinite system. If two points in such a 
system are separated by more than 5, they 
are independent. Combinatoric problems 
like the random graph ensemble have no 
lengths, and there is no geometric criterion 
for separating them into independent sub- 
problems. Yet it appears that power-law 
behavior in the size N replaces scaling with 
respect to a length. This is consistent with 
renormalization-group derivations of finite- 
size scaling (18), in which lengths occur 
only through the volume of the system, 
measured here by N. 

Table 1. Critical parameters for random k-SAT. 
The errors show the range of each parameter 
over which the best fits were obtained. 

We now apply the rescaling procedure to 
k-SAT, determining the critical concentra- 
tion by exact calculation if possible, by 
observation of the measured properties if 
not. For example, the intersection of all the 
lines in Fig. 1A identifies the critical point 
even if it were not known to be 112. 

We generated extensive data on the 
satisfiability of randomly generated k-CNF 
expressions with k ranging from 2 to 6 and 
determined the fraction of expressions that 
is unsatisfiable as a function of a (Fig. 2). 
We used a highly optimized implementa- 
tion (9) of the Davis-Putnam procedure 
(1 9). This procedure performs a backtrack 
search through the space of possible truth 
assignments and is the fastest known com- 
plete procedure for satisfiability testing on 
many classes of formulas (20). 

Figure 2 shows a clear threshold for each 
value of k. Except for the case k = 2, the 
curves cross at a single point and sharpen up 
with increasing N. For k = 2, the intersec- 
tions between the curves for the largest 
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values of N seem to converge to a single 
point as well, although the curves for small- 
er N deviate. The thresholds move rapidly 
to the right with increasing k. This is 
because a clause with k distinct variables 
prohibits only one of the 2k truth assign- 
ments to the k variibles, and thus, the 
constraints get weaker as k increases. 
' We can estimate the behavior of the 
threshold and crossover for large values of k 
by neglecting the overlap between clauses. 
This is called an annealed estimate, by 
analogy with annealed theories of materials 
(1 6), which average independently over 
sources of disorder. Each of the M clauses 
reduces the expected number of satisfying 
variable assignments from 2N by a factor of 
(2k - 1)/(2k) = (1 - 2-k) = yk. We get a 
plausible estimate for the threshold by asking 
when, on average, only one satisfying assign- 
ment survives. If lNyP = 2N(1+a10g2yk) = 1, 
then a,, = - l/log2yk = 2k In 2. The 
annealed estimate a,,, is identical to the 
upper bound described in (6). See Table 1 
for values of a,,,. 

The annealed estimate can be extended 
(21) to describe the crossover for large k. 
We estimate the probability that there are 
no satisfying configurations as (1 - yy)2N.  
This can be transformed into 

where 

Yann = N(a - aann)/aann 

The extension of this to finite-size (4, 17) 
scaling is just 

Figure 3A shows the threshold in more 
detail for several values of N for random 
3-CNF formulas. Rescaling with a, = 4.17 
and v = 1.5 (Fig. 3B), we find that these 
two parameters capture both the threshold 
shift and the steepening of the curves. 
Rescaling the data for random +SAT (Fig. 
3C) leads to a tighter fit to a single curve. 
In Table 1 we give the critical parameters 
obtained from this analysis fork from 2 to 6: 
v tends to 1, the annealed value, and a,,, 
becomes an increasingly good approxima- 
tion to a, as k increases. 

The rescaled curves in Fig. 3, B and C, 
are similar in form. Combining the rescaled 
curves for all values of k (Fig. 4), we find 
that the curves for k 2 3 all roughly 
coincide. As k + a ,  the curves approach 
the annealed limit derived above. The 
curve for k = 2 is also similar but shifted to 
the right from the others. 

From the perspective of performance 
evaluation for search algorithms, the point 
where 50% of the formulas are unsatisfiable 
is thought to be where the computationally 
hardest problems are found (5, 15). Note 
that the 50% ~ o i n t  lies somewhat to the 
right of the scale-invariant point (the point 
where the curves cross each other in Figs. 2 

posed spin glasses (magnets with two-spin 
interactions of random sign) as having in- 
herent exponential complexity. Models of 
spin glasses are known to possess many 
low-lying near-optimal states of no obvious 
symmetry and are nonergodic, that is, the 
shortest paths between these states can be 
arbitrarily long if one moves by the typical 
methods of local rearrangement search. 
Real spin glass materials exhibit very long 
magnetic relaxation times, presumably be- 
cause of this nonergodicity. 

In fact, both random signs and correla- 

and 3A) and shifts with N. Because the 
fraction of unsatisfiable formulas is given by 
the rescaled function fk(y) (Fig. 4), a de- 
scri~tion of the 50% threshold shift follows 
immediately. If we define y5, by fk(y5,) = 
0.5, then a5, = a,(1 + y5,JV-1/"). Fork = 
3, a,, = 4.17 + 3.1N-213 (Fig. 3B and 
Table 1). Crawford and Auton (9) fit their 
data on the 50% point as a function of N by 
arbitrarily assuming that the leading correc- 
tion will be O(1IN). They obtained a,, = 
4.24 + 6/N. The two expressions differ by 
onlv a few Dercent as N ranges from 10 to - 
a ,  but our procedure fits better away from 
a5,. For k = 2, the difference between the 
scaling expression and a 1/N extrapolation 
will be greater. Given the good fit of our 
scaling analysis, we conjecture that this 
method can also be of use in the character- 
ization of ~ h a s e  transitions in other combi- 
natorial problems of interest. 

Physicists have speculated that charac- 
teristics that lead to interesting critical 
phenomena in random systems are at the 
root of computational complexity and NP- 
completeness. Huberman and colleagues 
(22) have focused on the diverging correla- 
tion length seen at continuous phase tran- 
sitions as the root of computational com- 
plexity. This is consistent with the fact that 
computationally hard instances of problems 
such as graph coloring and 3-SAT are 
densest at or near phase transitions (5, 15). 
Yet there are other NP-complete problems 
(for example, the traveling salesman or 
max-clique) that lack a clear phase bound- 
ary at which "hard problems" cluster. Per- 
colation thresholds are phase transitions 
with diverging correlations, yet the cost of 
finding the largest cluster never exceeds N 
steps. Thus, diverging correlations alone do 
not cause exponential complexity. 

Fu and Anderson (23) had earlier pro- 

Flg. 4. Rescaled crossover functions for k = 2 through 6. The fraction of unsatisfiable formulas is 
given by the invariant function f,(y). 

tions are important factors in computation- 
al complexity but do not necessarily imply 
NP-completeness, which is somewhat spe- 
cial. In 2-SAT, which has random phases, 
finding a satisfying assignment, or proving 
its nonexistence, can be done in linear time 
by a technique pointed out by Aspvall et al. 
(14). The spin glass Hamiltonians studied 
in (23) are similar to our 2-SAT formulas. . , 

but the questions studied are different and 
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computationally much harder. Finding an 
assignment that falsifies the minimum num- 
ber of clauses is like finding the ground state 
in a spin glass phase and does not reduce to 
a single search on the directed graph of 
(14). For 2-SAT, in fact, finding such 
"ground states" is NP-hard (1 3). Therefore, 
if both diverging correlations (diverging in 
size if no lengths are defined) and a " s ~ i n  - 
glass" phase occur, we expect search to be 
exponentially difficult. 
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Langmuir-Blodgett Films of a Functionalized 
Molecule with Cross-Sectional Mismatch 

Between Head and Tail 

J. Garnaes, N. B. Larsen, T. Bjlzrrnholm,* M. Jlzrrgensen, K. Kjaer, 
J. Als-Nielsen, J. F. Jlzrrgensen, J. A. Zasadzinski 

A functionalized surfactant has been investigated as floating monolayers by synchrotron 
x-ray diffraction and as bilayers transferred to solid supports by the Langmuir-Blodgett 
technique through atomic force microscopy. The transfer process is accompanied by an 
increase of the unit cell area (about 17 percent) and by an increase of the average domain 
diameter of nanometer-scale domains (about three times). The unit cell area of the floating 
monolayer corresponds to close packing of the head groups and a noncharacteristic 
packing of the tilted alkyl chains. The larger unit cell area of the bilayer film is consistent 
with a particular ordered packing of the alkyl chains, leaving free space for the head groups. 

A s  a means of organizing complex mole- 
cules, the Langmuir-Blodgett (LB) tech- 
nique ( I )  has many potential applications 
within molecular electronics, nonlinear op- 
tics, and conducting thin films (Fig. 1). In 
this context, the structural properties of the 
LB films may have important consequences 
for applications; for example, the number of 
defects may limit electrical contact, while 
the degree of order and the sizes of domains - 
may limit, for example, the conductivity. 
In addition, changes of these properties 
may occur when the floating monolayers are 
transferred to solid substrates. By the com- 
bination of x-ray diffraction (XRD) of float- 
ing monolayers with atomic force microsco- 
py (AFM) of films transferred to solid sup- 
ports, it is possible to reveal these features. 

Because molecules with relatively large 
head groups, compared to alkyl chains, are 
often used in functionalized LB films (Fig. . - 
I), the design of the functional organic 
molecules reauires an understanding of the - 
packing properties of molecules with a 
"cross-sectional mismatch" between head 
and tail groups. As an example of such a 
molecule, we present a structural study 
performed of both a floating monolayer and 
a bilayer transferred to a solid substrate. 
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The particular molecule in question is an 
electron acceptor, octadecylthio-l,4-ben- 
zoquinone (Fig. 1E) , which forms nonlinear 
optical films when interfaced with electron 
donor molecules (2, 3). 

Previous comparative studies of floating 
monolayers and transferred multilayers 
have focused on fatty acids and similar types 
of compounds that have head and tail 
groups of similar cross-sectional size. Such 
compounds have been extensively studied 
by XRD in situ at the water surface (4-9) 
and by AFM (1 0-1 3) and electron diffrac- 
tion (14) as transferred multilayers. These 
studies have in many cases revealed highly 

Fig. 1. Molecules used in LB films in different 
areas of research. (A) Fatty ac~ds (26) have 
been the prototype for structural studies of LB 
films. Opposed to fatty acids, a large head 
group is common for electronically active mol- 
ecules. The functionalized molecules given in 
this table have been used for (B) electrical 
rectification (27), (C) conduction/redox activity 
(28), (D) nonlinear optics (29), and (E) redox 
activity such as electron acceptor (2, 3, 20). 
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