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Gene for Familial Psoriasis Susceptibility Mapped
to the Distal End of Human Chromosome 17q

James Tomfohrde, Alan Silverman, Robert Barnes,
Marcelo A. Fernandez-Vina, Melodie Young, Detra Lory,
Laura Morris, Kirk D. Wuepper,* Peter Stastny,
Alan Menter, Anne Bowcockf

A gene involved in psoriasis susceptibility was localized to the distal region of human
chromosome 17q as a result of a genome-wide linkage analysis with polymorphic micro-
satellites and eight multiply affected psoriasis kindreds. In the family which showed the
strongest evidence for linkage, the recombination fraction between a psoriasis suscepti-
bility locus and D175784 was 0.04 with a maximum two-point lod score of 5.33. There was
also evidence for genetic heterogeneity and although none of the linked families showed
any association with HLA-Cwé, two unlinked families showed weak levels of association.
This study demonstrates that in some families, psoriasis susceptibility is due to variation
at a single major genetic locus other than the human lymphocyte antigen locus.

Psoriasis is a chronic inflammatory derma-
tosis that affects ~2% of the population. It is
characterized by hyperproliferation of epi-
dermal cells and inflammation resulting from
infiltration of activated T helper cells and
mononuclear cells and release of pro-inflam-
matory cytokines (I, 2). It may also be
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associated with arthritis and can be present
as a severely inflammatory dermatosis in
patients with acquired immunodeficiency
syndrome (AIDS) (3). An understanding of
the pathogenesis of psoriasis remains an im-
portant challenge in dermatologic research.

Associations between psoriasis and cer-
tain human lymphocyte antigen (HLA)
alleles have been described, supporting the
hypothesis that psoriasis is a T cell-mediat-
ed, autoimmune disorder (4). The presence
of the HLA-Cw6 allele may predispose to
psoriasis because there is a strong associa-
tion between age of onset, family history,
and the presence of HLA-Cw6, B-13 and
B-w57 (5), and the relative risk of HLA-
Cw6 carriers developing psoriasis is 20 (6).
An “association” between a disease and
HLA indicates that certain HLA alleles are
more frequent in patients than in controls.
Loci are “linked” when they do not assort
independently at meiosis.

1141



It has been found that monozygotic
twins have significantly higher concordance
rates of disease than dizygotic twins (7) and
that psoriasis aggregates in some families
(8), suggesting that the disease can be
inherited as an autosomal dominant trait
with penetrance values of 10 to 50%.
About 30% of psoriasis patients have a first-
degree relative with the disease (2, 9).

Additional predisposing loci unlinked to
HLA are beginning to be identified for
some diseases previously described as HLA-
associated. One example is insulin-depen-
dent diabetes mellitus where there is evi-
dence that the insulin gene on chromosome
1lp can confer susceptibility (10). Evi-
dence for predisposing loci other than HLA
in autoimmune diseases encouraged us to
embark on a genome-wide study for markers
linked to psoriasis susceptibility.

Some of the problems associated with
mapping common genetic diseases have
been described (I1). When only a small
proportion of cases are due to bona fide
inherited susceptibility, some apparently fa-
milial cases may be present only because the
disease is so common. Other factors that
may confound a linkage analysis are incom-
plete penetrance of the trait in susceptible
individuals and variations in phenotypic
expression of the trait [which may depend
on age, gender, modifier genes, and envi-
ronmental trigger factors such as anteced-
ent streptococcal infection (12)]. The exis-
tence of more than one major gene ac-
counting for psoriasis (genetic heterogene-
ity) is likely, again decreasing the ability to
detect linkage by pooling lod scores (the
logarithm of the likelihood ratio for link-
age) from different kindreds.

We began a genome-wide search for
DNA markers cosegregating with a psoriasis
susceptibility locus in eight multiply affect-
ed families with a total of 65 cases of
psoriasis (Fig. 1). All 151 participating
relatives were Caucasian and sampled from
15 states of the United States. Presence or
absence of psoriasis was determined from
thorough medical history and clinical eval-
uation. All patients had plaque psoriasis.
Informed consent was obtained from all
family members available for venipuncture.
Lymphoblastoid cell lines were established
by Epstein-Barr virus transformation of pe-
ripheral blood lymphocytes, and genomic
DNA was isolated from these cells or from
whole blood by phenol-chloroform extrac-
tion as described (13).

A set of polymorphic microsatellites
spanning the genome (I14-16) and at an
approximate resolution of 10 cM were select-
ed with MultiMap (17). Polymorphic micro-
satellites were genotyped as described (14).

Because no adequate models exist for the
inheritance of psoriasis, three different ap-
proaches were used to identify a DNA
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marker cosegregating with psoriasis suscep-
tibility. The lod score approach was first
used and 14 different analyses were per-
formed in which the mode of inheritance
and the penetrance were varied. The sec-
ond approach was an “affected-only” anal-
ysis of the first approach that was used to
determine if nonaffected individuals could
obscure potential linkage. This approach
was independent of penetrance, and all
individuals who were not coded as affected
were recoded as unknown. The LINKAGE
software package (18) was used for these
analyses. The third approach was the affect-
ed-pedigree-member (APM) method that
does not depend on the mode of inheri-
tance of the disease and was used because
the results of the first two approaches are
sensitive to inaccuracies in the assumed
genetic model. The APM method does not
necessarily trace the segregation of alleles
with a disease in families, but tests for
excess sharing of alleles at the marker locus
among related affected individuals (19).
This allows one to evaluate allelic identity-
by-state among affected individuals. The
programs from the APM GENETICS PRO-
GRAMS package (19, 20) were used for
this. For all analyses, marker allele frequen-
cies were estimated from Centre d’Etude du
Polymorphisme Humaine (CEPH) families.

After genotyping 69 polymorphic micro-

PS1

satellites, we obtained evidence of linkage
with D175784 [AFM044xg3 (16)] when
psoriasis susceptibility was treated as a dom-
inant trait. Pairwise lod score data for the
first approach for DI17S784 and for addi-
tional linked loci (D17S785, D17S802, and
D178928) (16, 21) are presented by family
and are shown in Table 1. For family PS1,
a maximum two-point lod score of 5.33 at
4% recombination with D175784 was ob-
tained with the first model (at 99% pene-
trance), and a maximum two-point lod
score of 3.33 at 4% recombination with
D17S784 was obtained with the “affecteds-
only” model. When the inverse square root
weighting function was used, the multilocus
APM analysis indicated that there was a
highly significant excess of haplotypes that
were shared among affected members of the
PS1 family (empirical P value < 0.0001).
All three approaches supported linkage to
markers at the distal region of 17q.

No segregation analysis has been per-
formed for psoriasis susceptibility; conse-
quently, there was no estimated penetrance
value to use for the calculations, and we
initially had to calculate lod scores over a
variety of penetrance values. Considering
just the large linked family (PS1) in which
evidence for linkage was strongest, there
were 21 individuals with the susceptibility
haplotype and 20 of these were affected,

Fig. 1. Psoriasis fam-
ilies participating in
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this study. Circles, fe-
males; squares, males;
solid symbols, individ-
uals with psoriasis. De-
ceased individuals are
represented by diago-
nal lines through sym-
bols. The average age
of onset of psoriasis in
these families is shown
parenthesis: PS1
(18), PS2 (6), PS3 (17),
PS4 (29), PS5 (23),
PS6 (unknown), PS7
(21), and PS8 (21).
Three families had af-
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fected members who
had developed the dis-
ease in infancy (PS1: 4
of the 17 members for
whom the ages of on-
set were known; PS2: 3
of the 6 affected mem-
bers; PS5 1 of the 11
affected members for
whom the ages of on-
set were known).




giving a penetrance estimate of ~95%.
However, four unaffected members in this
family were not sampled for genotyping. If
one or more of these unaffected individuals
did harbor the susceptibility haplotype, the
penetrance estimate would be less. In this
family, varying the penetrance from 60 to
99% or varying the frequency of the disease
allele did not affect the results significantly.
Considering all eight families, the maxi-
mum two-point lod score was obtained
when a penetrance of 80% was used (2, =
6.04, & = 0.10). However, there was no
significant difference in the conclusions when
penetrance values of 60% (Z, . = 5.96, 8 =
0.08) or 99% (Z__ = 5.70, 8 = 0.15) were

max

used. The “affecteds-only” analyses gave
similar results, though the lod scores were
smaller (for the eight families combined Z
= 4.04, 6 = 0.10).

To refine the location of the psoriasis
susceptibility locus, we constructed a genetic
map of polymorphic microsatellites from this
region (22) and used it as a baseline map for
multipoint linkage analysis of family PS1. The
order and sex-average recombination frac-
tions between the marker loci are as follows:
centromere—D178785-0.04-D 178802~
0.10-D17S5784-0.11-D175928—telomere.
Because of computational limitations, mul-
tilocus linkage analyses were performed after
recoding the data to reduce the number of

Table 1. Pairwise chromosome 17 lod score data by family. The population prevalence of psoriasis

was assumed to be 1%. Penetrance = 0.99.

Recombination fraction

Family Zax 0
0.00 0.01 0.05 0.10 0.20 0.30 0.40
Locus D17S785
PS1 -0.01 0.51 1.95 2.37 2.25 1.63 0.76 2.42 0.18
PS2 —4.57 -2.30 -1.20 -0.72 -0.32 -0.13 —-0.04 0.00 0.50
PS3 -0.62 -0.32 0.08 0.22 0.24 0.15 0.05 0.25 0.16
PS4 -0.15 0.00 0.28 0.39 0.38 0.24 0.08 0.40 0.14
PS5 —1.88 —1.54 —-0.96 —-0.63 -0.33 -0.19 -0.10 0.00 0.50
PS6 —-3.63 —1.66 -0.92 —0.60 -0.29 -0.14 —0.05 0.00 0.50
PS7 0.26 0.26 0.23 0.19 0.11 0.06 0.01 0.26 0.00
PS8 -1.10 -0.81 -0.38 -0.18 —0.038 0.01 0.01 0.01 0.30
Total —-11.71 —-5.86 —-0.94 1.03 2.01 1.62 0.73 2.01 0.20
Locus D17S802
PS1 0.76 4.47 476 4.52 3.65 2.50 1.16 477 0.04
PS2 -5.59 -3.12 —1.54 -0.79 0.16 0.05 0.07 0.07 0.36
PS3 0.84 0.82 0.72 0.60 0.38 0.18 0.05 0.84 0.00
PS4 —2.45 -1.19 -0.32 —0.01 0.14 0.12 0.05 0.15 0.22
PS5 -3.36 -1.67 -0.97 -0.59 -0.18 0.00 0.05 0.05 0.40
PS6 -3.10 -1.82 -0.98 -0.59 -0.24 -0.10 -0.04 0.00 0.50
PS7 -3.12 —-2.53 —1.60 -1.10 —-0.60 -0.33 -0.14 0.00 0.50
PS8 —4.05 -3.21 —1.86 —-1.16 —-0.50 -0.19 -0.04 0.00 0.50
Total —20.07 -8.25 -1.79 0.88 2.49 2.23 1.16 2.54 0.23
Locus D17S784
PS1 1.36 5.07 5.32 5.03 4.06 2.79 1.30 5.33 0.04
PS2 -0.39 0.03 0.68 0.93 0.97 0.73 0.35 1.00 0.15
PS3 -0.80 —0.49 -0.10 0.04 0.08 0.04 —0.01 0.09 017
PS4 2.30 2.24 2.02 1.74 117 0.65 0.25 2.30 0.00
PS5 0.37 0.37 0.42 0.52 0.59 0.50 0.30 0.59 0.19
PS6 —-3.04 —1.37 —0.68 -0.40 -0.16 —0.06 -0.02 0.00 0.50
PS7 —-4.95 -3.70 -2.16 —1.42 -0.74 -0.39 -0.17 0.00 0.50
PS8 —-2.98 —-2.47 —-1.59 —-1.09 —-0.58 -0.29 -0.11 0.00 0.50
Total -8.13 -0.32 3.91 5.35 5.39 3.97 1.89 5.70 0.15
Locus D175928
PS1 2.26 2.23 2.08 1.88 1.42 0.91 0.35 2.26 0.00
PS2 -1.75 -1.15 -0.25 0.17 0.44 0.39 0.18 0.45 0.23
PS3 -0.70 -0.71 -0.57 -0.35 -0.13 -0.07 —-0.05 0.00 0.50
PS4 —1.88 —-1.52 -0.79 -0.32 0.08 0.08 0.05 0.08 0.30
PS5 —1.01 -0.76 -0.32 —-0.11 0.04 0.05 0.02 0.05 0.26
PS6 0.17 0.17 0.14 0.12 0.07 0.03 0.01 017 0.00
PS7 —-4.21 -3.92 -3.06 -2.16 -1.15 -0.58 -0.22 0.00 0.50
PS8 —2.49 —-212 -1.32 -0.85 -0.38 -0.15 —-0.03 0.00 0.50
Total -9.61 -7.78 —4.09 -1.62 0.34 0.66 0.31 0.66 0.30
SCIENCE * VOL. 264 * 20 MAY 1994

marker alleles. We obtained a peak mul-
tipoint lod score of 6.42 between D175784
and D178928 (6.6% distal to D175784 and
5.1% proximal to D175928), suggesting that
this psoriasis susceptibility gene lies within
this interval. However, the next most likely
region, distal to D175928, was only 16:1
times less likely. The odds against placement
proximal to DI7S802 were greater than
1000:1. Location scores obtained under the
assumption of different recombination frac-
tions in males and females lead to the same
conclusion regarding the location of the
disease locus. The data obtained with the
“affecteds-only” model were in close agree-
ment, giving a peak lod score of 4.41 for
tight linkage to D175928 (no recombina-
tion). Chromosome 17q haplotypes for fam-
ily PS1 are shown in Fig. 2. Multipoint
linkage analysis with families PS6, PS7, and
PS8 yielded only negative lod scores.

The admixture test, as implemented in
the HOMOG program (23), was significant
when tested against multipoint lod score
data (¢ = 0.50). Hence, there was evi-
dence for heterogeneity with 50% of the
families being linked. Families PS1 and PS2
showed strong evidence consistent with
linkage (posterior probabilities >0.97),
whereas families PS4 and PS5 showed less
evidence (posterior probabilities 0.94 and
0.76). Families PS3, PS6, PS7, and PS8
appear to be unlinked (posterior probabili-
ties <0.20). When only families PS1, PS2,
PS4, and PS5 were considered, the com-
bined maximum two-point lod score for
linkage between D175784 and a psoriasis
susceptibility locus was 8.44 at 6% recom-
bination with the first model and 5.67 at
2% recombination with the second model.
There were no apparent differences in clin-
ical presentation observed in the linked and
unlinked families.

We also tested for linkage with HLA.
There was no evidence for linkage of pso-
riasis susceptibility with polymorphic mi-
crosatellites within and flanking the HLA
cluster, or with class II haplotypes (24) for
any of the families. However, because of
the previously reported associations of pso-
riasis susceptibility to HLA alleles, and in
particular to HLA-Cw6, the association of
psoriasis susceptibility with this allele was
examined with polymerase chain reaction
sequence-specific oligonucleotide probes
(PCR-SSOP) (25) in the families. Only
two of the families in which psoriasis sus-
ceptibility was unlinked to 17q (PS6 and
PS7) yielded empirical P values for excess
sharing of the HLA-Cwé6 allele of 0.027 and
0.004, respectively [for significance empir-
ical P value = 0.0001 implies a lod score of
3 (23)]. These empirical P values were
generated with 10,000 replicates and,
though not significant, suggest that psoria-
sis susceptibility in families PS6 and PS7
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may be associated with HLA-Cw6.

Linkage mapping is used in the study of
human diseases to identify regions likely to
contain disease genes. These regions can
then be isolated with physical mapping
approaches such as the cloning of the re-
gion in a series of overlapping yeast artificial
chromosomes, converting these to cosmids,
and using these to select genes by means of
a variety of approaches which include direct
hybridization to complementary DNA li-
braries, exon trapping (26), and direct se-
lection (27). Occasionally linkage mapping
reveals several highly probable candidate
genes within the mapped region. A gene
involved in the activation of T cells was
shown by others to lie within this region of
17q. This is ILF, or interleukin enhancer
binding factor which, in addition to an
inducible T lymphocyte factor (NFAT),
binds to purine-rich regions of the interleu-
kin-2 (IL-2) and human immunodeficiency
virus promoters (28). One could speculate
that affected members in families showing
linkage to 17q harbor alterations in ILF that
may potentially alter its regulation of IL-2
transcription. This could cause inappropri-
ate expression of IL-2 resulting in the in-
flammatory cascade and hyperproliferation
characteristic of lesional skin. It will be
necessary to search for mutations in the ILF
gene in affected members from 17g-linked
families to determine if this is the suscepti-
bility gene.

In conclusion, we have localized a gene
involved in psoriasis susceptibility to the distal
end of the long arm of human chromosome 17
and provided evidence for genetic heteroge-
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neity. Mapping such genes in affected families
is important because it may lead to the iden-
tification of genes responsible for sporadic
psoriasis. In the linked families, no associa-
tion between psoriasis susceptibility and
HLA-Cw6 was detected; however, weak asso-
ciations with HLA-Cw6 were seen in two
unlinked families. HLA alleles were not cor-
related with age of onset nor with severity of
psoriasis in any of the families. At least two
unlinked families were not HLA-associated,
raising the possibility that there is at least one
additional psoriasis susceptibility locus.
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Long-Distance Neuronal Migration in the Adult
Mammalian Brain

Carlos Lois and Arturo Alvarez-Buylla

During the development of the mammalian brain, neuronal precursors migrate to their final
destination from their site of birth in the ventricular and subventricular zones (VZ and SVZ,
respectively). SVZ cells in the walls of the lateral ventricle continue to proliferate in the brain
of adult mice and can generate neurons in vitro, but their fate in vivo is unknown. Here SVZ
cells from adult mice that carry a neuronal-specific transgene were grafted into the brain
of adult recipients. In addition, the fate of endogenous SVZ cells was examined by
microinjection of tritiated thymidine or a vital dye that labeled a discrete population of SVZ
cells. Grafted and endogenous SVZ cells in the lateral ventricle of adult mice migrate long
distances and differentiate into neurons in the olfactory bulb.

During brain development, most neurons
are born in the VZ and SVZ. From these
proliferative regions, cells migrate to reach
their appropriate targets where they differ-
entiate into neurons. The generation, mi-
gration, and differentiation of neurons are
generally thought to end soon after birth
(1, 2). However, in adult birds in which
neurogenesis persists (3), precursor cells
that divide in the walls of the lateral ven-
tricles migrate to distant targets within the
forebrain before they differentiate into neu-
rons (4). Neurogenesis alsp continues in
the dentate gyrus of the hippocampus and
in the olfactory bulb of adult rodents (5). In
contrast to adult birds, newly generated
neurons in adult mammals are thought to
be derived from precursor cells that prolif-
erate close to their site of differentiation
instead of in the ventricle walls (5).

In mammals, proliferating cells persist
through adulthood in the SVZ of the lateral
ventricles (I, 6), and these proliferating
SVZ cells from the brain of adult mice can
generate neurons in vitro (7). These cells
are probably the epidermal growth factor—
responsive neuronal precursors recently iso-
lated from the brain of adult mice (8). The
fate of these neuronal precursors in vivo
remains unknown. Whereas earlier work
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suggested that SVZ cells in adult mammals
may differentiate into glial cells or neurons
(1, 6, 9), a recent study indicates that SVZ
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cells in adult mammals die soon after mito-
sis (10).

To investigate whether SVZ cells from
adult mice could differentiate into neurons
in vivo, we grafted SVZ cells from adult
transgenic mice that carry the reporter gene
B-galactosidase attached to the promoter of
the neuron-specific enolase (NSE) gene
(11). This transgene is only expressed in
differentiated neurons (I11). SVZ explants
from transgenic animals were stereotaxic-
ally grafted into the lateral wall of the
lateral ventricle of adult immunocompati-
ble nontransgenic mice (Fig. 1) (12). An-
imals were killed 30 days after grafting, and
transplanted cells that differentiated into
neurons were detected by X-gal histochem-
istry (12). Cells that were X-gal-positive
(X-gal*) were detected only in the graft site
and the ipsilateral olfactory bulb (13). We

found no evidence of X-gal* cells in the

® = X-gal* cell

Fig. 1. Transplantation of transgenic SVZ cells close to the lateral ventricle of nontransgenic mice
(11). X-gal histochemistry produced a blue precipitate in the perinuclear cytoplasm of the NSEp
transgenic cells. Cell nuclei stained with Hoechst 33258 appear green. (A) Transgenic cells at the
site of transplantation (arrow). (B, C, and D) show X-gal* neurons in the olfactory bulb 30 days (d)
after transplantation. (B) X-gal* periglomerular neuron (arrow). (C and D) X-gal* neurons (arrows)
in the granule cell layer. Ob, olfactory bulb; Iv, lateral ventricle; st, striatum. Scale bars, 50 pm.
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