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Enhancer Point Mutation Results in a Homeotic 
Transformation in Drosophila 

Mary Jane Shimell, Jeffrey Simon, Welcome Bender, 
Michael 6. O'Connor* 

In Drosophila, the misexpression or altered activity of genes from the bithorax complex 
results in homeotic transformations. One of these genes, abd-A, normally specifies the 
identity of the second through fourth abdominal segments (A2 to A4). In the dominant 
Hyperabdominal mutations (Hab), portions of the third thoracic segment (T3) are trans- 
formed toward A2 as the result of ectopic abd-A expression. Sequence analysis and 
deoxyribonuclease I footprinting demonstrate that the misexpression of abd-A in two 
independent Hab mutations results from the same single base change in a binding site for 
the gap gene Krijppelprotein. These results establish that the spatial limits of the homeotic 
genes are directly regulated by gap gene products. 

T h e  establishment of correct segmental 
identity in Drosophila mela~gaster requires 
the proper function and expression of genes 
located in the antennapedia and bithorax 
complexes [reviewed in (1-3)]. In the bitho- 
rax complex, loss-of-function mutations typ- 
ically result in transformations of posterior 
segments toward more anterior fiites, where- 
as the ectopic activation of homeotic genes 
along the anterior-posterior axis produces 
dominant, gain-of-function phenotypes in 
which anterior segments are transformed 
toward more posterior identities (4-8). The 
initial activation of homeotic gene expres- 
sion appears to be regulated by the segmen- 

M. J. Shimell and M. B. O'Connor, Department of 
Molecular Biology and Biochemistry and Develop- 
mental Biology Center, University of California, Irvine, 
CA 9271 7, USA. 
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tation gene products (9-15). For example, 
mutations in the gap gene hunchback (hb) 
result in an anterior shift of Ubx expression 
(12), whereas mutations in Kruppel, knirps, 
and giant cause ectopic activation of Abd-B 
(1 3-1 6). In several cases, incomplete ho- 
meotic regulatory elements containing hb 
binding sites have been shown to confer 
spatially restricted patterns of gene expres- 
sion when positioned next to a Lac2 reporter 
gene (9-1 1). However, as a result of the 
large size of homeotic regulatory regions (50 
to 100 kb), the precise roles of these indi- 
vidual elements within the context of a 
complete regulatory domain has remained 
elusive. 

We have studied the Hub- 1 and Hab-2 
mutations, two gain-of-function alleles that 
ectopically express the abd-A protein 
(ABD-A) . The Hub- 1 and Hub-2 alleles 
were discovered by E. B. Lewis and I. 

Biological Chemistry and ~olecular  ~harmacology, Duncan, and Lewis has pro- 
Haward Medical School, Boston, MA 021 15, USA. 
W. Bender, Department of Biological Chemistry and posed that they likely affect a 
Molecular Pharmacology, Harvard Medical School, regulatory element (4, 15). The Hub 
Boston, MA 021 15, USA: tions cause dominant transformations of 
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ectopic abd-A expression (4, 6, 17). The 
most common phenotype observed is the 
loss of haltere or third leg (or both) (4, 17). 
Less frequently, a transformation of haltere 
toward wing is also observed (1 8). When 
originally isolated, the Hub-1 allele occa- 
sionally caused a partial transformation of 
A1 toward A2 (4). In recent analysis, this 
transformation is not observed. We at- 
tribute the difference to the accumulation 
of genetic modifiers in the stock, because 
the penetrance and expressivity of the phe- 
notype can be enhanced in certain genetic 
backgrounds (1 7). We have also found that . * 

the ienetrance of the phenotype is depen- 
dent on temperature. Approximately 9% of 
individuals who inherit the Hub-2 chromo- 
some show some type of transformation at 
lS°C, 35% show transformation at 25"C, 
and 50% show a phenotype at 29OC. An 
examination of abd-A exvression in Hub 
mutant embryos reveals that abd-A protein 
is expressed anterior to its normal paraseg- 
ment 7 (PS 7) boundary within PS 5 and a 
portion of PS 6 (Fig. 1, A and B) (6). This 
pattern of misexpression is consistent with 
the observed transformations. 

Recombination exueriments have  laced 
Hab-1 within the abd:~ gene and assdciated 
regulatory sequences (4, 17). This region 
encompasses approximately 80 kb of DNA 
that includes the 30-kb abd-A transcription 
unit as well as 50 kb of 5' regulatory se- 
quences. In previous reports, mutations that 
ectopically activate homeotic genes have 
been shown to be associated with chromo- 
somal aberrations (19-23). These lesions 
have included insertions, deletions, and trans- 
locations that rearrange regulatory sequences 
in the non-coding portions of these genes. In 
contrast, Southern blot analysis of Hub muta- 
tions failed to detect any aberrations along the 
entire length of the abd-A transcription unit 

and within the 50 kb of upstream regulatory 
DNA (24). . -, 

If the Hub alleles are point mutations, 
we reasoned that they must affect one of the 
regulatory elements that direct abd-A ex- 
pression. We have described an 1 1-kb frag- 
ment from the large abd-A intron (Fig. 2A) 
that directs the expression of a Lac2 report- 
er construct with an anterior boundary in 
PS 7 (25). The sequences responsible for 
directing this pattern in early embryos were 
narrowed to a 1.7-kb Sal I-Xba I fragment 
by a series of hybrid dysgenesis-induced 
deletions of the 11-kb fragment and by an 
additional Lac2 germline transformation 
construct (Fig. 2A). We have referred to 
the regulatory sequences that control the 
early boundaries of homeotic expression 
patterns as initiator elements (25, 26) and 
refer to this particular fragment as the 
iab-2 (1.7) initiator. 

To test whether the Hub-1 mutation was 
located within the minimal iab-2 (1.7) ini- 
tiator sequence, transformant lines were 
made with the Hub-1 1.7-kb Sal I-Xba I 
fragment inserted upstream of a Lac2 re- 
porter gene (27). Transformant embryos 
containing Hub- 1 sequences driving Lac2 
show an early ectopic stripe of Lac2 expres- 
sion in PS 5 at the cellular blastoderm stage - 
as well as a band of staining within the 
central block that is wider and more intense 
than that of transformant embryos contain- 
ing wild-type (WT) iab-2 (1.7) sequences 
(Fig. 1, C and D). The ectopic expression 
persists during gastrulation, and, by the 
completion of germ-band extension, the 
pattern of Lac2 misexpression is similar to 
that of ABD-A misexpression (Fig. 1, B 
and F). These results demonstrate that the 
lesion associated with the Hub-1 phenotype 
is located within the iab-2(1.7) fragment. 

The Hub-1 lesion was identified by the 

Fig. 1. ABD-A misexpression caused by a 
mutation in the iab2f1.7) fragment. (A) A dis- 
sected (6), wild-type (WT) embryo at the germ- 
band extended stage (6 hours of development) 
stained with ABD-A ant~body. The PS 7 anterior PS 7 

limtt of ABD-A expression IS indicated with a 
bracket. For all embryos, anterior is on the left. C 
(B) A dissected Hab-2 embryo showing misex- 
presston of ABD-A in PS 5 and PS 6. (C and E) 
Expression of LacZ directed by the lab-Z(1.7) 
fragment and (D and F) the equivalent fragment 
from an Hab-1 chromosome. (C) and (D) are E 
ventral vtews of early gastrulation embryos, 
whereas (E) and (F) show dissected germ- 
band extended embryos. Embryos in (C) and 
(D) were hybridized to antisense, digoxigenin- 
labeled LacZ RNA (2n.  whereas embwos in PS 7 PS 5 

(E) and (F) were stained with a LacZ aniibody 
(27). Note the anterior ectopic stripes of LacZactivity directed by the Habfragment [bracket in (B) 
and arrowhead in (D)]. The location of the WT band of LacZstaining in (C) has been positioned by 
the double-staining of embryos with digoxigenin-labeled LacZ RNA probes and antibodies to ftz 
and eve. For (E), we previously determined that the location of the anterior staining boundary 
directed by the jab-2 enhancer is located at the PS CPS 7 border (25). 

sequencing of the 1.7-kb Hub-1 fragment 
and the equivalent fragment from a stock 
containing the background chromosome on 
which Hab- 1 was induced (28). A single G 
to A transition was identified at base 251 
within the Hub-1 fragment (Fig. 2B). To 
determine whether the Hub-2 chromosome 
also contained a lesion at or near this site, 
a 285-base pair (bp) fragment centered 
about the Hub-1 mutation (Fig. 2B) was 
amplified from Hub-2 hemizygous DNA by 
polymerase chain reaction (PCR) and se- 
quenced (28). The same G to A transition 
was identified in the Hub3 DNA. There 
were four DNA sequence polymorphisms 
found on the Hub-2 chromosome and its 
parent but not on Hub- 1 and its background 
chromosome (Fig. 2B). These polymor- 
phism~ demonstrate that these two lesions 
are the result of independent mutational 
events. 

To reveal which regulatory proteins 

~ ~ I m A c O O L U ~ ~ ~ ~  so0 

M-CCADX2T-A- 550 -- I 0 0  4-- 6.0 
MT roo 
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Fig. 2. Location of the Hab-1 and Hab-2 muta- 
tions. (A) Physical map of the abd-A transcrip- 
tion unit and the locations of the jab-2(11) and 
jab-Z(1.7) fragments within the large intron. 
Diagnostic restriction sites are Sal I (S) and Xba 
I (X). (B) Sequence of that portion of the jab- 
2(1.7) fragment that binds gap and pair-rule 
gene products (28, 31). The location of the Hab 
mutations are indicated with an arrow. The four 
single-base polymorphisms that distinguish 
Hab-1 from the Hab-2 chromosome are high- 
lighted in reverse type. The lower base is found 
in the Canton Sand Hab-2chromosomes, while 
the upper base is found in the bx8 and Hab-1 
chromosomes (28). The KR binding site dis- 
rupted by the Hab mutations is enclosed in the 
stipled box. Additional sites protected by EVE 
are outlined by the clear box, while HB sites are 
enclosed in the black boxes (31). 
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might control the iab-2 initiator element, we 
introduced the WT d-2(1.7) Lac2 expres- 
sion construct into various gap and pair-rule 
mutant backgrounds (29). In a Kriippel mu- 
tant, we observed ectopic stripes of lacZ 
ex~ression in PS 5 similar to that exhibited 
in '~ab-1 mutants. An examination of the 
sequence surrounding the Hub base change 
revealed that the altered G base was imbed- 
ded in the sequence GAAA-mTGAA, 
which matches a consensus Kr protein (KR) 
binding site in 9 out of 11 bases (30). Gel 
shift and deoxyribonuclease (DNase) I foot- 
printing experiments were conducted to de- 
termine whether KR bound to this site or 
other sites in the iab-2 (1.7) sequence. A gel 
mobility-shift analysis of iab-2 (1.7) se- 
quences revealed that KR binds to only a 
single fragment that contains the consensus 
KR binding site (31). The DNase I foot- 
printing of iab-2 (1.7) and Hub- 1 sequences 
confirmed that KR binds to the consensus 
sequence and that binding is disrupted by 
the Hub-1 lesion (Fig. 3). Although we 
cannot formally exclude the possibility that 
some other protein also binds to this site, we 
were able to confirm the importance of 

WT Hab 
I- 
+KR -KR +KR -KR 
nnnn 

Fig. 3. The DNase I footprinting of KR protein to 
WT and Hab-1 mutant sequences. Lanes la- 
beled WT illustrate the DNase I cleavage lad- 
der of a 147-bp HinP I fragment (coordinates 
171 to 318, Fig. 28) from the jab-Z(1.7) frag- 
ment. Lanes labeled Hab show the DNase I 
cleavage ladder of an identically engineered 
piece of DNA from the Hab-1 mutant. In lanes 
labeled +KR or -KR, protein extracts (1X = 8 
pg, 1 OX = 80 pg) were used from KR express- 
ing (+) or nonexpressing (-) bacterial cells 
(39). Maxam-Gilbert sequencing reactions are 
shown in the leftmost lanes (GA and TC). The 
sequences shown is the opposite from that 
shown in Fig. 28. 

Kriippel protein concentration in the gener- 
ation of the Hub phenotype, by asking 
whether the penetrance of the Hub pheno- 
type was affected in a Kr heterozygote. We 
found that in a Krl+;Hab- I/+ background, 
the number of flies exhibiting a Hub pheno- 
type increases to 19% (268 flies scored), 
compared to the 1.5% (785 flies scored) 
exhibited by sibling flies carrying the CyO 
balancer chromosome ( +/CyO;Hab- 1 I+) . 
Animals of the genotype KT/+ also show a 
weakly penetrant gain-of-function pheno- 
type that partially overlaps the Hab phe- 
notype. In control crosses, we found that 
the penetrance of the KT-dominant phe- 
notype was only 3.5% (254 flies scored). 
Taken together, these results demonstrate 
that KR, acting through the iab-2 region, 
represses the expression of abd-A anterior 
to PS 7. This finding fulfills the prediction 
made by Lewis "that Hub damages a regu- 
latory element adjacent to [abd-A] in such 
a way as to reduce its affinity for a repres- 
sor" (4). 

The Kriippel gene has been implicated 
to play both active and repressive roles in 
early Drosophila development (32). The Kr 
gene product is a zinc finger protein that 
forms a bell-shaped concentration gradi- 
ent within the central portion of the 
Drosophila embryo (32, 33). In pre-cellular 
embryos, the central domain of KR ex- 
pression accumulates peak levels of pro- 
tein in PS 6 and 7. Protein levels fall off 
sharply on either side of this domain, such 
that no protein is detected anterior of PS 
3 or posterior of PS 9. The region-specific 
repression that we observe (in PS 3 to 5, 
but not in PS 7 to 9) may reflect either the 
interaction with a second anteriorly local- 
ized protein such as hunchback or a differ- 
ence in the way that KR binds at high and 
low concentrations (or both). Recent ex- 
periments have demonstrated that at high 
concentrations KR can bind to a single 
site as a dimer, whereas at low concentra- 
tions it occupies the same site as a mono- 
mer (34). This alteration in binding stoi- 
chiometry could influence in vivo protein- 
protein interactions. We note that several 
HB binding sites exist within the iab- 
2(1.7) initiator (Fig. 2B), and we specu- 
late that efficient repression anterior to PS 
7 could require the binding of both HB 
and KR proteins and perhaps a physical 
interaction between the two. 

The pair-rule nature of the iab-2(1.7) l 
Lac2 expression suggests that stripe forma- 
tion also involves a pair-rule gene product. 
A likely candidate is the even-skipped pro- 
tein, which both binds to the iab-2(1.7) 
fragment and is required for iab-2(1.7) 
activity (3 1). These observations suggest 
that the iab-2(1.7) initiator is similar to 
that of other previously described bithorax 
enhancers from the bx and pbx regions that 

appear to set early spatial expression do- 
mains through short-range interactions 
between pair-rule activators and gap-gene 
repressors (9-1 1). Because none of these 
isolated elements faithfully reproduce a 
complete homeotic expression pattern, 
however, it has been difficult to assess their 
roles within the intact bithorax com~lex. 
The results described here demonstrate-that 
individual reeulatorv elements do contribute 
to the control of homeotic genes within 
intact complexes. 

Point mutations in the regulatory se- 
quences of higher eukaryotes are very rare. 
One of the few cases in which regulatory 
point mutations cause a phenotype is in 
the P-globin cluster, where lesions in the 
CCAAT and TATA boxes have been 
associated with certain forms of p thal- 
assemia (35). In another case, a single 
base change that prevents the binding of 
the GATAl transcription factor causes 
the Greek form of hereditary persistence of 
fetal hemoglobin (36). In Drosophila, a 
single base-sequence polymorphism within 
the rosy promoter has been shown to alter 
levels of rosy gene expression (37). The 
rarity of regulatory point mutations prob- 
ably reflects both a small target size and 
several forms of regulatory redundancy. It 
is also possible that many regulatory mu- 
tations cannot be recovered because they 
produce severe phenotypic consequences, 
such as dominant lethal mutations. 

The recovery of two independent mu- 
tations at the same base within the iab-2 
regulatory sequences is unusual. The ho- 
meotic transformation obviouslv contrib- 
uted to the isolation of these mutants, but 
it is curious that, with perhaps hundreds of 
regulatory-protein binding sites within ho- 
meotic gene clusters, more mutations of 
this type have not been isolated. The 
explanation may lie in an unusual combi- 
nation of circumstances that is peculiar to 
the structure of the iab-2 initiator ele- 
ment. In manv cases. individual control 
elements contain a multitude of binding 
sites for a given regulatory protein, and 
mutation in any one site may have only 
limited effects [for example, (38)l. In ad- 
dition, control elements themselves may 
be redundant. Our analysis of the iab-2 
regulatory domain has revealed no other 
fragments capable of producing a pattern 
like that of iab-2 (1.7). This lack of con- . , 

trol-element duplication, together with 
the single KR binding site may have made 
the iab-2 initiation element especially sus- 
ceptible to regulatory point mutations. 
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Cloning of a Grb2 lsoform with 
Apoptotic Properties 
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Bruno Tocque* 
Growth factor receptor-bound protein 2 (Grb2) links tyrosine-phosphorylated proteins to 
a guanine nucleotide releasing factor of the son of sevenless (Sos) class by attaching to 
the former by its Src homology 2 (SH2) moiety and to the latter by its SH3 domains. An 
isoform of grb2 complementary DNA (cDNA) was cloned that has a deletion in the SH2 
domain. The protein encoded by this cDNA, Grb3-3, did not bind to phosphorylated 
epidermal growth factor receptor (EGFR) but retained functional SH3 domains and in- 
hibited EGF-induced transactivation of a Ras-responsive element. The messenger RNA 
encoding Grb3-3 was expressed in high amounts in the thymus of rats at an age when 
massive negative selection of thymocytes occurs. Microinjection of Grb3-3 into Swiss 3T3 
fibroblasts induced apoptosis. These findings indicate that Grb3-3, by acting as a dominant 
negative protein over Grb2 and by suppressing proliferative signals, may trigger active 
programmed cell death. 

W e  screened 500,000 recombinant phages 
carrying DNA from human placenta with 
an oligonucleotide probe derived from the 
human grb2 sequence ( I ) .  Nine of ten 
clones contained inserts that were identical 
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to the grb2 sequence; however, we identi- 
fied one clone with a deletion in the SH2 
domain (2). Analysis of the remaining se- 
quence revealed an identity with grb2, even 
in the 5' and 3' noncoding regions. The 
open reading frame of the cloned DNA 
encoded a 177-amino acid sequence with 
two SH3 domains flanking the incomplete 
SH2 domain (Fig. 1). The amino acids 
deleted in the SH2 domain (amino acids 60 
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