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A Panoramic Code for Sound Location 
by Cortical Neurons 

John C. Middlebrooks,* Ann E. Clock, Li Xu, David M. Green 
By conventionql spike count measures, auditory neurons in the cat's anterior ectosylvian 
sulcus cortical area are broadly tuned for the location of a sound source. Nevertheless, an 
artificial neural network was trained to classify the temporal spike patterns of single neurons 
according to sound location. The spike patterns of 73 percent of single neurons coded 
sound location with more than twice the chance level of accuracy, and spike patterns 
consistently carried more information than spike counts alone. In contrast to neurons that 
are sharply tuned for location, these neurons appear to encode sound locations throughout 
360" of azimuth. 

I t  often is assumed that dimensions of per- 
ception are represented in the brain by 
orderly maps containing sharply tuned neu- 
rons, and such maps are well known in the 
visual and somatosensorv cortices. M a ~ s  of 
auditory space have been demonstrated at 
the level of the midbrain ( I ) ,  but physiolog- 
ical studies of the auditory cortex have failed 
to demonstrate any evidence of a space map 
containing sharply tuned neurons. This has 
been puzzling, given that auditory cortex 
lesions in human uatients and in ex~erimen- 
t3l animals result in prominent deficits in 
sound localization behavior. In the inferior 
temporal and striate visual cortices, informa- 
tion-theoretic analysis has demonstrated 
that the spike patterns of neurons, including 
both spike count and spike timing, can cany 
nearly twice the stimulus-related informa- 
tion of spike counts alone (2). We studied 
spatial coding by auditory neurons in the 
cat's anterior ectosylvian sulcus cortical area 
(area AES). We used an artificial neural 
network to classify the spike patterns of 
single neurons according to sound source 
location. We found that single neurons can 
code for sound locations throughout 360" of 
azimuth. 

Data were obtained from 67 single units 
on the posterior bank of the anterior ecto- 
sylvian sulcus of eight chloralose-anesthe- 
tized cats (3). Noise bursts, 1 to 300 ms in 
duration, were presented in an anechoic 
room from 18 loudspeakers spaced in 20" 
steus of azimuth around the horizontal 
plane. Stimulus locations were varied pseu- 

dorandomly to acquire 40 responses to stim- 
uli at each of 18 sound source locations (for 
a total of 720 responses). Units responded 
with latencies greater than 10 ms, and their 
responses typically were restricted to the 
first 50 ms after stimulus onset; thus, nearly 
all the driven spikes fell within a time 
interval of 40 ms (4). To train the artificial 
neural network, we used the responses of 
single units on odd-numbered trials (20 " 
trials per stimulus location). To test the 
network ~erformance. we used the even- 
numbered trials from the same unit. This is 
a form of cross validation, in which training 
and testing utilized independent data sets. 

The spike pattern elicited by a noise 
burst usually contained only a small number 
of spikes. The average spike counts at op- 
timal loudsueaker locations were around 
three spikes per trial, yet even at such 
optimal locations, many stimulus presenta- 
tions elicited no spikes at all. For that 
reason, we averaged the responses of a 
single neuron across multiple presentations 
of a given stimulus to estimate a spike 
density function. One way of computing 
this density function would have been to 
form. for each of the 18 stimulus locations. 
a single average of all 20 spike patterns in 
the training set and a single average of all 
20 patterns from the test set. Under that 
condition, however, the network would 
have overtrained to idiosvncrasies in the set 
of 18 average training patterns. Moreover, 
the single set of test patterns would have 
provided only one pattern per stimulus lo- 
cation with which to evaluate network 
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patterns, drawn randomly with replacement. 
Thus, a given bootstrapped pattern might 
incorporate zero, one, or more copies of any 
particular spike pattern. Repeating this pro- 
cess, we generated N,,,,, bootstrapped train- 
ing patterns from the training set and N,,,, 
bootstra~ued test uatterns from the test set. 

L .  

Network performance improved with in- 
creasing N,,,,,, nearing an asymptote for 
values of N,,,,, between 10 and 20, so we 
used a value of N,,,,, = 20. We used N,,,, = 
100 so that we could assess performance in 
terms of percent correct. In preliminary 
studies. we tested values of M (the number 
of spike patterns included in each bootstrap) 
between 1 and 32 and found that network 
performance improved monotonically with 
increases in the size of M; in the results 
presented here, we used M = 20. At each of 
the 18 stimulus locations, we generated a set 
of 20 bootstrapped training patterns and 100 
bootstrapped test patterns. 

The artificial neural network was a one- 
layer linear perceptron with 40 inputs, each 
corresponding to the estimated probability 
of a spike occurring in a l-ms poststimulus 
time bin. Two output units formed a 
weighted sum of the 40 inputs. We used the 
Widrow-Hoff learning rule (6) to adjust the 
weights so that the output units produced 
the sine and cosine of the stimulus azimuth 
(7); the sine and cosine are proportional to 
the distance of the stimulus from the mid- 
sagittal plane and the interaural plane, 
respectively. For convenience in presenting 
network output, we computed the arctan- 
gent of the two. outputs, which gave a 
continuously varying output in degrees of 
azimuth. We favored this simple network 
over more complex multilayer nonlinear 
nets because we found that it performed as 
well as more complicated nets and was less 
prone to overtraining. 

Bv traditional measures of tuning based " 
on spike counts, all of the units showed 
broad spatial tuning. For example, all but 
three of the units responded across at least 
180" of azimuth with spike counts that were 
within 50% of their maxima, and the re- 
sponses of 42% of the units never fell below 
50% of their maxima. regardless of stimulus , " 
location. Despite this broad tuning of spike 
counts, the temporal spike patterns of most 
neurons varied systematically with sound 
location. Examples of the spike patterns 
elicited from one unit are shown in a raster 
plot in Fig. 1. Patterns varied both in spike 
count and spike timing. For this unit, the 
main feature of spike timing that varied 
with location was the overall latency of the 
burst, but the intertrial variability in the 
timing of spikes within patterns frustrated 
any effort to identify patterns simply on the 
basis of first-spike latency. The performance 
of the network, which used the timing of 
spikes throughout each burst to classify 
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responses of this unit, i s  shown in Fig. 2. 
The network outputs clustered near the 
correct stimulus locations. The neuron 
could code sound location across all stimu- 
lus locations, not just within a particular 
best area. For this unit, the median error 
between stimulus and network response was 
21.0" across al l  stimulus locations. In our 
sample of 67 units, median errors ranged 
from 15.5" to 73. 1" and averaged 39.5". By 
comparison, random chance performance 
would give a median error o f  90". 

The ability of these single units to code 
sound location fell far short of the perfor- 
mance of a behaving cat. For instance, a cat 
can walk to the source of a noise burst wi th 
accuracy approaching 100% when the tar- 
gets are separated by 30" (8). Nevertheless, 
given that localization coding by single 
neurons i s  well above chance levels, one 
would exDect the accuracv of location cod- 
ing to increase wi th increases in the size of 
the neuronal pool. The improvement that 
could be achieved by invoking the contri- 

Postonset time (ms) 

Fig. 1. Spike patterns of a single unit. Patterns 
are shown in a raster format in which each row 
of marks represents the times of occurrence of 
spikes elicited by one stimulus presentation at 
the azimuth indicated along the vertical axis. 
Ten such rows, representing spike patterns 
elicited by 10 of the 40 stimulus presentations, 
are illustrated at each stimulus location. The 
stimulus duration was 100 ms. Negative azi- 
muths indicate the animal's left side, contralat- 
era1 to the recording site. 

butions of more neurons i s  l imited by the 
degree of correlation in location coding 
among multiple neurons in the pool and by 
the efficiency wi th which information i s  
combined across neurons (9). The absence 
of data o n  correlation between neurons 
prohibits estimating the size of the neuronal 
pool that could account for the cat's local- 
ization behavior. 

The burst of spikes elicited at the onset of 
a noise burst showed relatively little influence 
of the duration of the noise burst. That is, a 
l-ms noise burst elicited a 30- to 40-ms burst 
of spikes that was similar to that elicited by a 
100-ms noise burst. For 25 units, we obtained 
responses to I-, lo-, and 100-ms noise bursts. 
When we trained the network with responses 
to a single duration and tested with responses 

to stimuli of the same duration, network 
performance was comparable across the three 
durations tested; across 25 units, median er- 
rors averaged 46.1°, 42.5", and 42.4" for 
durations of 1, 10, and 100 ms, respectively. 
When trained with 100-ms responses and 
tested with 1- or 10-ms responses, perfor- 
mance was s t i l l  well above chance, with 
average median errors increasing by only 7.8" 
and 10.8", respectively. 

I t  i s  a common observation that the 
spatial tuning o f  auditory units in the cortex 
broadens considerably when the stimulus 
sound pressure level i s  increased (10). Nev- 
ertheless, network performance was rela- 
tivelv robust when we trained and tested 
wi th responses to stimuli that roved be- 
tween 20 and 40 dB above neuronal thresh- 

Fig. 2. Network performance. The artifi- 300 
cia1 neural network was trained with a set 
of average spike patterns bootstrapped 
from half of the recorded spike patterns. 200 
Each cross represents the network out- 
put based on one pattern bootstrapped - 
from an independent test set; 100 net- f work outputs are shown for each stimu- a 
lus location. The solid line represents the e. 
circular centroids of the network re- 3 
sponses at each stimulus location; the g O 
circular centroid is the azimuth of the 8 
resultant formed by vector addition of t 
the individual responses and represents -lo0 

xi the central tendency of the data. The 
dashed line represents perfect perfor- 
mance. -200 

+ 
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Fig. 3. Classification of spike patterns com- 100 
pared with classification based on spike 
counts. A maximum likelihood estimator was 
used to classify spike counts according to 
location. As with the network classification, we 80 
bootstrapped 20 training and 100 test patterns 
for each stimulus location. To compare the 
neural network output, which was continuously f 
graded in azimuth. with the discrete output of f 60 the maximum likelihood estimator, we quan- P tized the network output in 20" steps corre- - 
sponding to the 20" loudspeaker separation. ' 
Each symbol represents results from one unit. $ a  
The position along the abscissa represents the 
performance of the maximum likelihood estima- 8 
tor in classifying spike counts, and the position 20 
along the ordinate represents the performance 
of the artificial neural network in classifying 
spike patterns. Open circles represent the per- 
cent of bootstrapped trials in which the re- 0 
sponse was within ?10" of the stimulus loca- 0 2 0 4 0 6 0 8 0 1 0 0  
tion. The lower and the left-most dashed lines Spike count (x) 
indicate random chance performance (5.6%). 
Crosses represent the percent of trials in which the response was within +50° of the stimulus 
location, that is, no more than two loudspeaker positions away from the correct loudspeaker. The 
upper and the right-most dashed lines indicate chance performance for the 50" case (27.8%). The 
solid diagonal line indicates equal performance by count and pattern classifiers. 
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old. In a sample of the 40 units for which 
there is complete data, the median errors in 
the roving-level condition increased by an 
average of only 6.39 above the larger of the 
median errors in the two constant-level 
conditions. Network performance was sub- 
stantially worse, however, when we at- 
tempted to train with responses to 20-dB 
stimuli and test with 40-dB responses. 

We compared the classification based on 
spike patterns with a classification based on 
spike counts alone. The one-layer percep- 
tron was poorly suited to classify counts 
because the spike count measure has only a 
single dimension. Instead, we used a max- 
imum likelihood estimator, which can be 
shown to be an optimal classifier (I I). In 
that procedure, spike counts from the boot- 
strapped training sets were used to accumu- 
late the spike probability distribution for 
each stimulus location, then counts from 
the test sets were classified by assigning to 
each count the most probable stimulus lo- 
cation. We could not use the maximum 
likelihood procedure to classify temporal 
spike patterns because the probability dis- 
tribution for that 40-dimensional measure 
(corresponding to the 40 1-ms time bins) 
could not be estimated. The network clas- 
sification of spike patterns generally outper- 
formed any classification of spike counts. A 
comparison of the performance of the net- 
work in classifying spike patterns with the 
~erformance of a maximum likelihood esti- 
mator in classifying spike counts alone is 
shown in Fig. 3. The spike count classifier 
was fairly successful at identifying the cor- 
rect loudspeaker (open symbols), although 
its performance was below the random 
chance level for 6 of 67 units. In contrast. 
the pattern classifier performed better than 
chance for all but one unit, and the pattern 
classifier surpassed the spike count classifier 
for 50 of 67 units (74.6%). Moreover, 
when the spike count classifier erred, it 
tended to make larger errors than did the 
pattern classifier, so the pattern classifier 
gave more responses within 50" of the 
correct louds~eaker for all but three units. 

In the optic tectum and superior collic- 
ulus, sound locations appear to be repre- 
sented by a place code in which, by virtue 
of the spatial tuning of single neurons, a 
particular sound source location maps onto 
a particular place within the tectal or col- 
licular map (I).  No such auditory map has 
been demonstrated in the cerebral cortex. 
Our results suggest an alternative view, in 
which a stimulus at nearly any location 
activates a diffuse population of neurons. In 
this view, each of the active neurons sig- 
nals, with its temporal firing pattern, the 
approximate location of the sound source, 
and the precise sound source location is 
signalled by the concerted activity of many 
such neurons. Each neuron is panoramic in 

that it can carry information about loca- 
tions throuehout 360" of azimuth. Al- - 
though there are many instances in sensory 
physiology in which particular stimuli can 
be shown to be represented by the levels of 
activity of tuned neurons, it is unrealistic to 
imagine that every possible stimulus dimen- 
sion is represented by a corresponding class 
of tuned neurons. Sound location mieht - 
prove to be one example of a stimulus 
dimension that is rewresented in the cortex 
by a temporal firing code rather than by a 
place code. The temporal pattern classifica- 
tion that we have applied in this instance 
may be applicable to a variety of problems 
in sensory coding. 
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Specification of Pore Properties by the Carboxyl 
Terminus of Inwardly Rectifying K+ Channels 

Maurizio Tag lialatela, Barbara A. Wi ble, Roberta Caporaso, 
Arthur M. Brown* 

Inwardly rectifying potassium (K+) channels (IRKs) maintain the resting membrane po- 
tential of cells and permit prolonged depolarization, such as during the cardiac action 
potential. Inward rectification may result from block of the ion conduction pore by intra- 
cellular magnesium (Mg,2+). Two members of this family, IRK1 and ROMKI, which share 
40 percent amino acid identity, differ markedly in single-channel K+ conductance and 
sensitivity to block by Mg,2+. The conserved H, regions were hypothesized to determine 
these pore properties because they have this function in voltage-dependent K+ channels 
and in cyclic nucleotide-gated channels. However, exchange of the H, region between 
IRK1 and ROMKI had no effect on rectification and little or no effect on K+ conductance. 
By contrast, exchange of the amino- and carboxyl-terminal regions together transferred 
Mg2+ blockade and K+ conductance of IRK1 to ROMKI . Exchange of the carboxyl but not 
the amino terminus had a similar effect. Therefore, the carboxyl terminus appears to have 
a major role in specifying the pore properties of IRKs. 

T h e  predicted topology of IRKs is very 
different from that of voltage-dependent 
K+ channels. For IRKs, hydropathy plots 
suggest only two potential transmembrane 
segments, called M, and M, (1-4); for 
voltage-dependent K+ channels, six trans- 
membrane segments (S, to S6) have been 
postulated (5). Segments M, and M, are 
separated by a region called H, because of 

its extensive sequence similarity with a 
conserved region linking the fifth and 
sixth transmembrane segments of voltage- 
dependent K+ channels (also called SS,- 
SS,) (6). Segment H, is thought to line 
the pore of voltage-dependent K+ (7), 
Na+ (a), and Ca2+ channels (9), as well 
as cyclic nucleotide-gated channels (1 0). 
Because of sequence homology, H5 has 
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