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Molecular investigations of evolutionary history are being used to study subjects as diverse 
as the epidemiology of acquired immune deficiency syndrome and the origin of life. These 
studies depend on accurate estimates of phylogeny. The performance of methods of 
phylogenetic analysis can be assessed by numerical simulation studies and by the ex- 
perimental evolution of organisms in controlled laboratory situations. Both kinds of as- 
sessment indicate that existing methods are effective at estimating phylogenies over a wide 
range of evolutionary conditions, especially if information about substitution bias is used 
to provide differential weightings for character transformations. 

Over the past few decades, biologists from 
many disciplines have turned to phyloge- 
netic analyses to interpret variation in bio- 
logical systems (I). This increased interest 
in evolutionary history has developed partly 
in response to a new appreciation of the 
importance of understanding evolutionary 
constraints when interpreting biological 
variation and partly in response to develop- 
ments in phylogenetic methodology, Three 
developments in particular have been crit- 
ical to the success of the field: (i) the 
development of objective criteria and algo- 
rithms for discriminating among potential 
phylogenies, (ii) increased computational 
power to implement phylogenetic algo- 
rithms, and (iii) a rapid increase in the data 
available for inferring phylogenies, espe- 
cially from molecular investigations (2). As 
a result of these developments, applications 
of phylogenetic analysis span the range of 
biological diversity from questions about 
the history of life (3) to studies of the 
epidemiology of acquired immune deficien- 
cy syndrome (AIDS) (4). However, the 
success of these applications depends on the 
accuracy of the inferred phylogenies, so it is 
necessarv to ask how well the methods work 
and to identify the conditions under which 
thev mav fail. , , 

The accuracy of methods of phylogenet- 
ic analysis can be assessed by the examina- 
tion of either numerical simulations of phy- 
logenies or phylogenies of organisms whose 
evolutionary history has been observed di- 
rectly. Numerical simulations assume a par- 
ticular model of evolution and then gener- 
ate characters (typically, nucleotide se- 
quences) according to the model and to a 
given phylogeny. Thus, an investigator can 
generate many replicate data sets under 
specified conditions in order to compare the 
performance of competing methods. The 
analysis of known phylogenies adds a reality 
check to the simulation studies: The histow 
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of the lineages is known (or, ideally, con- 
trolled by the investigator), but the orga- 
nisms evolve under real biological con- - 
straints rather than idealized model condi- 
tions. Known phylogenies may involve lab- 
oratory or cultivated strains whose history 
has been recorded (5) or lineages that have 
been manipulated under controlled experi- 
mental conditions for the purpose of gener- 
ating testable phylogenies (6, 7). 

The numerical simulation and experi- 
mental phylogeny approaches are largely 
complementary, and both kinds of studies 
are necessary to evaluate methods of phylo- 
genetic analysis effectively. Simulations can 
be used to explore virtually any conceivable 
phylogeny, and phylogenies can be replicat- 
ed with speed and ease. The primary limi- 
tation of numerical simulations is that thev 
always include gross simplifications of bio- 
logical Drocesses. For instance. most simu- - .  
lations assume that nucleotide positions 
evolve independently of one another, even 
though several causes of non-independence 
have been identified (8). Many simulations 
also assume simple one- or two-parameter 
substitution models; for instance, all possi- 
ble substitutions mav be assumed to be 
equally probable (a one-parameter model), 
or separate probabilities of substitution may 
be assigned to transitions and transversions 
(a two-parameter model). However, real 
substitution biases are known to be much 
more complex (9). Although these com- 
plexities can be added to simulation studies, 
there is rarely sufficient knowledge to esti- 
mate the extent of the influence of factors 
such as non-independence among nucleo- 
tide positions or variance of rates of evolu- 
tion across nucleotide positions. Therefore, 
results from simulation studies need to be 
compared to results from studies of real 
biological organisms to determine the ef- 
fects of the simplifying assumptions. If re- 
sults from simulations can be replicated 
with experimental systems, then greater 
faith can be placed in the simulation re- 
sults. However, if departures from the sim- 

ulation results are discovered, then the 
Drocesses that are res~onsible for the differ- 
knces can be identifild and the simulations 
can be improved. The simulations are likely 
to suggest conditions that are of interest in 
the experimental phylogenies, and the ex- 
perimental phylogenies can provide a test of 
the simulation results. Thus, a combination 
of the two amroaches is the most effective . . 
way to evaluate the performance of meth- 
ods of phylogenetic analysis (10). 

Simple Evolutionary Models 

Most simulated phylogenies assume a sim- 
ple one- or two-parameter model of evolu- 
tion and then test the ability of various 
methods to reconstruct the evolutionary 
history of lineages generated under the as- 
sumed model (I 1, 12). Several methods are 
known to be consistent (at least for simple 
tree topologies) for data generated under 
such models, which means that they con- 
verge on the correct answer, given infinite 
data. In general, most of the commonly 
used methods are consistent if corrections 
are made for superimposed changes (such as 
multiple substitutions at a single nucleotide 
site) in accord with the model of evolution 
used (13). For instance, most pairwise dis- 
tance methods (except the UPGMA meth- 
od) are consistent under the Tukes-Cantor 
one-parameter model of evolution if Jukes- 
Cantor distances are used to infer the phy- 
logeny (1 2, 14). Character-based methods 
such as parsimony can also be made consis- 
tent by using a Hadamard transformation to 
correct the data (13). However, the fact 
that a method is consistent indicates onlv 
that it will converge on the correct answer 
when given unlimited data, so it is neces- 
sary to do power analyses in order to com- 
pare the performance of competing meth- 
ods, given finite data sets. 

A common objection made to simula- 
tion studies is that it is easy to bias the 
results in favor of almost any method by 
choosing conditions to sirnulate that are 
most favorable to that method (15). Such 
biases can be avoided onlv bv exhaustivelv , , 
exploring the potential parameters. of any 
given problem. As an example, consider 
one of the most commonly simulated cases: 
a simple four-taxon unrooted tree, in which 
the five lineages (four peripheral branches 
and a central branch) are evolving at two 
different rates (Fig. 1). Felsenstein (1 6) 
used a tree of this type to demonstrate that 
some methods of phylogenetic reconstruc- 
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tion are inconsistent when two of the op- 
posing peripheral branches are evolving 
much more rapidly than are the remaining 
three branches. Given a model of evolution 
(for example, the Kimura two-parameter 
model, which allows for independent sub- 
stitution rates for transitions and transver- 
sions) (1 7), and given two rates of evolu- 
tion (one rate for two of the opposing 
branches and a second rate for the remain- 
ing three branches), the universe of possi- 
ble trees can be examined in a twodimen- 
sional graph (Fig. 1). Instantaneous substi- 
tution rates can be varied from zero to 
infinity along each of the axes, and se- 
quences can be generated in accord with 
the model of evolution. A power analysis is 
conducted by generating sequences of given 
finite length and then inferring the trees 
from the sequences by the use of competing 
methods. 

Figure 1 shows a power analysis for three 
common methods of phylogenetic inference 
and the effects of two common methods of 
data transformation under the model of 
evolution outlined above (18). For non- 
transformed data, all three methods are 
inconsistent in parts of the graph space; use 
of Kimura-corrected distances (which ex- 
actly match the model of evolution) makes 
the neighbor-joining method consistent 
across the graph (12). Another common 
type of data transformation involves char- 
acter weighting (19, 20). In character 
methods such as ~arsimonv. differential 
weights are often assigned td'the different 
character-state changes, depending on their 
observed frequency of occurrence. Thus, in 
the Kimura model simulated in Fig. 1, 
transitions are 10 times more likely to occur 
than are transversions, so the weighted- 
parsimony analysis weights the transver- 
sions 10 times more heavily than transitions 
(in practice, a wide range of weights of 
transversions over transitions produces 
identical results) (Fig. 2). Such weighting is 
not equivalent to transforming the data to 
account for superimposed changes, so 
weighted parsimony is not consistent across 
the entire graph space (12). However, the 
power analysis shown in Fig. 1 indicates 
that weighting of characters has a much 
greater effect on performance than does 
correction for superimposed changes, espe- 
cially at high rates of change. Although the 
weighted-parsimony method is more likely 
to be misleading at extreme differences in 
the two rates (that is, in the upper left 
comer of the. graph space), it is more likely 
to find the correct tree at high rates of 
change (Fig. 1). The Kimura corrections do 
improve the performance of the neighbor- 
joining method in regions that are incon- 
sistent for the uncorrected data but do not 
improve performance when rates are uni- 
formly higher (as does character weight- 

ing). The Kimura corrections actually re- (for example, those in the upper left comer 
duce the performance of distance methods of the graphs in Fig. 1) when they evolve 
under conditions of equal rates of change under simple models of evolution (21). 
(Fig. 1). However, all methods become inconsistent 

Some authors have argued that methods for some trees when their assumptions are 
such as parsimony should be avoided be- violated (12), and the cost of complete 
cause they are inconsistent for some trees consistency under simple models of evolu- 

Flg. 1. Performance of three methods of phylogenetic 
analysis on the basis of simulation of four-taxon trees 
under the Kimura model of evolution (18). Two rates of 
evolution were simulated: one rate for branches a, b, 
and c (horizontal axis of each graph) and a second 

ao rate for branches d and e (vertical axis). The diagonal 
0 0 . 7 5 m  ro (dashed line, top left) represents equal rates of evo- 

Mkng th .  lution along all lineages. Branch lengths are shown in 
h 4 .nd c) expected frequency of divergent nucleotides at the 

two ends of the respective branches. At infinite rates 

I of change, DNA sequences with equal base compo- 
sitions are expected to differ at 75% of their positions. 
Blue indicates that the method estimates the correct 

: tree a high percentage of the time under the simulated 

I 
conditions; red indicates poor performance of the 
method (see color bar, top right). The solid white lines 
circumscribe the regions in which each method esti- 
mates the correct tree wer 95% of the time. In the 
regions above the dashed white lines, the methods 

I 
estimate the correct tree less than one-third of the time 
(a rate worse than that obtained by choosing a tree at 
random). The three colored graphs on the left were 
based on nontransformed data, the three graphs on 
the right shaw the effects of character-state weighting 
(for parsimony, top) and distance correction (for 
neighbor joining and UPGMA, middle and bottom). 

Fig. 2. Efficiency of five loo 
methods of phylogenetic 
analysis for a four-taxon tree 
with equal rates of evolution, 
evolving under a Kimura ;; 80 
model of evolution and a 2 
10: 1 transition:transversion B 70 
ratio. The branch lengths E 
shown on the tree indicate 8 60 
that 50% of the nucleotide i! 
sites are expected to 
change along each branch. 
Although all five methods 
are consistent under these 
conditions (they all eventual- 
ly converge on the correct 10' lo2 103 lo4 lo5 106 lo7 lo8 
solution), the methods differ Number of nucleotides 
markedly in the number of 
nucleotides needed to find the correct solution. All points are based on 1000 simulated trees. WPars 
is weighted parsimony (45) (any weighting of transversions over transitions from 5:l to infinity 
produces results indistinguishable from those shown); Pars is uniformly weighted parsimony (45); 
NJ is neighbor joining with Kimura distances (38); UPGMA is the unweighted pairgroup method of 
averages with Kimura distances (40); Lake's invariants is the method also known as evolutionary 
parsimony (22). 
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tion can be high. Figure 2 shows a set of 
simulations from a single point of the tree 
space described in Fig. 1, where all branch- 
es have a length of 0.5 (that is, 50% of the 
nucleotide positions are expected to differ 
at either end of each branch) (1 8). At these 
high but equal rates of evolution across all 
branches, all methods of phylogenetic anal- 
Gsis are consistent, but they differ dramati- 
cally in the number of nucleotides that are 
required to find the correct tree with high 
probability. For instance, Lake's method of 
invariants (22), which is preferred over 
~arsimonv bv some workers because of its , , 
consistency under the Kimura model for 
four-taxon trees (21), requires more nucle- 
otides to find the correct solution (at a 
probability greater than 99%) than are pre- 
sent in many genomes. Neighbor joining 
with Kimura distances, another consistent 
method, is much more efficient but still 
requires approximately 50,000 nucleotides 
to find the correct tree with equally high 
probability. In contrast, uniformly weight- 
ed parsimony requires only 2000 nucleo- 
tides and weighted parsimony requires only 
200 nucleotides to achieve the same perfor- 
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Fig. 3. Estimated phylogeny of HIV sequences 
from a Florida dentist, seven of his HIV-sero- 
positive patients, and four individuals from the 
local population (LC) whose HIV sequences 
were most similar to those of the dentist (47). 
The outgroup (HIVELI) is an African HIV-1 se- 
quence. Two divergent HIV sequences (la- 
beled x and y) were examined from most indi- 
viduals. The dental clade consists of patients 
whose HIV sequences are closer to those of the 
dentist than to those of any of the local controls. 
Branch lengths are proportional to the number 
of inferred evolutionary changes averaged 
across all possible character reconstructions 
(from MacClade) (20). The bar labeled kt  is the 
distance from the root to the most divergent tip; 
it also indicates the divergence scale for the 
simulations in Fig. 4. 

mance. Because of the current limitations 
on collection of sequence data, these differ- 
ences in efficiency need to be weighed 
against considerations of consistency when 
an analytical method is chosen. 

Simulations such as those in Figs. 1 and 
2 provide comparisons of methods under 
idealized conditions, when the assumptions 
of some methods match the evolutionary 
model exactly. Such simulations are useful 
for identifying general patterns in the per- 
formance of various methods or types of 
data transformation. For instance, the sim- 
ulations in Figs. 1 and 2 show that appro- 
priate corrections for superimposed changes 
can increase the performance of methods 
when the rates of evolution are highly 
variable but that differential weighting of 
character states is more effective in increas- 
ing performance at high rates of evolution. 

Although simple trees and simulations 
of simple evolutionary models can provide 
insights into the performance of different 
methods, the generality of the conclusions 
is not always obvious. Real evolving nucle- 
otide sequences differ from these simple 
simulations in many important ways, the 
most obvious of which are that substitution 
biases are unlikely to fit a simple one- or 
two-parameter model very closely and that 
the phylogenies that are of interest are 
rarely as simple or as uniform as the four- 
taxon case. Therefore, it is necessary to 
increase the complexity of the evolutionary 
models and to model particular phylogenies 
that are of interest. 

Modeling Complex Phylogenies: 
HIV and the Florida Dental Case 

Consider the recently reported case of the 
Florida dentist suspected of transmitting 
human immunodeficiency virus (HIV) to 
some of his patients (4). After a probable 
case of HIV transmission from dentist to 

Table 1. Number of nucleotide substitutions 
across the tree shown in Fig. 3, as estimated 
from HIV sequence data (4). Values were de- 
rived from the averages across all equally par- 
simonious character-state reconstructions by 
use of the program MacClade (20); minimum 
and maximum number of substitutions across 
reconstructions are shown in parentheses. 

To 
From 

A G C T 

patient was identified, the dentist wrote an 
open letter to his other patients in which he 
encouraged them to be tested for HIV 
infection. To date, 10 seropositive patients 
have been identified (23). However. some . , 

of these patients have other risk factors for 
HIV, so the question arises as to which, if 
any, of the patients were infected by the 
dentist rather than from another source. 
Sequences of the gp120 gene of HIV encod- 
ing the C2-V3 domains were obtained from 
DNA amplified from peripheral mononu- 
clear cells from the dentist, from seroposi- 
tive patients, and from control individuals 
from the local population. Phylogenetic 
analyses of these sequences are consistent 
with the dental-transmission hypothesis for 
6 of the 10 patients (4, 23). In the original 
study, a single evolutionary lineage was 
identified that contained only viruses from 
the dentist and five patients he purportedly 
infected (the sixth infected patient was 
discovered later); this lineage has been 
termed the dental clade (Fig. 3). The in- 
ferred phylogeny was consistent with the 
independent epidemiologic data: The den- 
tal clade contained all of the patients with- 
out anv other identified risk factors for HIV 
and excluded all of the patients with other 
confirmed risk factors. However, the study 
reporting these results has been criticized 
because of questions concerning the reli- 
ability of the inferred dental clade (24), so 
it is of interest to assess the probability of 
correctly inferring this phylogeny. 

Even a cursory examination of HIV ev- 
olution shows an important departure from 
the assumptions of the Kimura model of 
evolution (25) .(Table 1). For instance, 
although A to G nucleotide transitions are 
the most common type of change observed 
in HIV seauences. A to C transversions are 
more common than C to T transitions and 
all of these types of change are several times 
more common than C to G transversions. 
Moreover, the substitution matrix is highly 
asymmetric (Table 1). Therefore, to evalu- 
ate the ability of various methods to infer 
HIV phylogenies, we need to take the 
relative frequencies of all 12 types of nucle- 
otide change into account. - 

We can take the estimated phylogeny of 
the HIV viruses (Fig. 3) and the observed 
substitution matrix (Table 1) as our model 
and simulate the phylogeny at varying rates 
of overall change (26). Figure 4 shows the 
percentage of branches in the simulated 
trees that are inferred correctlv bv several 

3 ,  

common methods of analysis (27), as well 
as the probability of resolving the dental 
clade, as the overall amount of change is 
varied from one-fifth to 20 times the 
amount observed in the original study. At 
the level of change seen in the original 
study, 90 to 94% of all the branches in the 
tree were resolved in the simulations by 
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every method except UPGMA, and the 
dental clade was resolved 100% of the time 
with every method except UPGMA. The 
positive effects of character weighting are 
not seen unless the overall rate of change is 
much greater than was originally observed 
(Fig. 4), which indicates that the uniform 
weighting used in the original study was 
justified. The 100% recovery of the dental 
clade in the simulations provides significant 
support for a phylogeny that is consistent 
with the dental transmission hypothesis. 

Part of the reason that the dental clade is 
so easv to infer is that the HIV seauences 
were obtained within 2 to 3 years after the 
transmission from dentist to ~atients (28). 
If the time lag had been grea;er, it is likely 
that the probability of successfully recover- 
ing the dental clade would have been low- 
er. This effect is shown in Fig. 5, in which 
the terminal lineages of the model phylog- 
eny were extended by simulation for up to 
20 additional years. Six years after transmis- 
sion, the probability of recovering the den- 
tal clade drops below 95% for all the meth- 
ods. Thus, despite the high confidence that 
can be placed in the veracity of the dental 
clade (P > 99% for every method except 
UPGMA), the relevant part of the phylog- 
eny could not have been recovered with 
high confidence by use of these sequences if 
the problem had not been detected soon 
after transmission. 

In general, the clustering methods based 
on Kimura distances (UPGMA and neieh- " 
bor joining) perform more poorly than the 
parsimony methods, especially with higher 

levels of divergence. At the maximum level 
of divergence simulated (about 20 times the 
observed level), all of the parsimony meth- 
ods (as well as UPGMA) recovered the 
dental clade 100% of the time, whereas 
neighbor joining found this clade only 79% 
of the time (Fig. 4). Overall, neighbor 
joining recovered 72.6% of the clades and 
UPGMA recovered 7 1.1% at the high level 
of divergence, compared with 83.4 to 
89.4% clade recovery for the various parsi- 
mony methods. At the lowest level of 
divergence simulated (one-fifth of that ob- 
served), neighbor joining did about as well 
as the parsimony methods but UPGMA did 
considerably worse (Fig. 4). In the simulat- 
ed extension of the terminal lineages (Fig. 
5), the performance of UPGMA (and to a 
lesser extent neighbor joining) fell off more 
quickly than that of any of the parsimony 
methods. This decrease in performance is 
likely to be at least partly the result of 
departures by HIV from the Kimura model 
of evolution in the case of neighbor joining, 
and by the sensitivity of the method to 
departures from equal rates of change in the 
case of UPGMA. 

These simulations of the Florida dentist 
case still do not take all of the complexities 
of HIV evolution into account. For in- 
stance, the simulations do not model the 
changes in HIV that result from the duration 
of infection (29), pressure from the host's 
immune system (30), stage of the disease 
(31), or therapy (32), any one of which 
could result in parallel evolution across lin- 
eages and thereby reduce the probability of 

Fig. 4. Simulations of the A . 
shown in Fig. 3 All methods except 

neighbor joining 
at various levels of overall 
divergence ( k t ,  the prod- Obsewed level of divergence 

Neighborjolning 
uct of substitution rate and 
time). One hundred simu- = n 6  .- 
lated data sets were aen- S -'-ill 
erated as described (26). 
(A) Probability of recover- 
ing the dental clade at dif- 
ferent levels of divergence 
for five methods of analy- 
sis. (B) Overall percentage 
of the clades in Fig. 3 that 
were recovered by each 
method. The level of diver- 
gence in the observed 
data is indicated by ar- 
rows, the location of which 
was estimated on the basis 
of the length of the original 
tree as compared with the 
lengths of the simulated 
trees. 

-e Parsimony, asymmetric weighting 
-+-Parsimony, symmetric weighting 
-&Parsimony, uniform weighting 
+Neighborjdning. Kimura distances 
d U P G M A ,  Kimura distances 

-- 
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correct estimation of phylogeny. There also 
are likely to be interactions among sites in 
the HIV genome that reduce their evolu- 
tionary independence. Rates of change also 
vary considerably across sites in the HIV 
genome, although the parsimony methods 
appear to be effective across a wide spectrum 
of rates of change (Fig. 4). However, it is 
unlikely that any simulation will ever be 
complex enough to incorporate all the de- 
tails of the evolutionary process. Even if 
such knowledge were readily available, a 
simulation that incorporated all the relevant 
details would have to be as complex as a real 
organism. Therefore, one option is to build 
phylogenies through controlled laboratory 
evolution of actual organisms. 

Experimental Phylogenies with 
Real Organisms 

The observed evolution of HIV sequences 
over the course of just a few years (Fig. 3) 
suggests that controlled phylogenies of vi- 
ruses could be generated in the laboratory 
and used to test methods of phylogenetic 
analysis. Indeed, such phylogenies have 
been produced (6). In experimental phylog- 
enies, the shape of the phylogeny (order of 
branching events and time between 
branching events) and some details such as 
population size and mutagenic environment 
are controlled by the investigator, but the 
evolutionary changes incorporated depend 
on the constraints imposed by the experi- 
mental organisms. Experimental phyloge- 
nies can provide a reality check on simula- 
tion studies and provide a test of the falli- 
bility of analysis methods. 

Figure 6 shows an experimental phylog- 
eny derived from bacteriophage T7 and 
compares the observed amounts of change 
in nucleotide sequences to those inferred 

P Years after transmission 

Fig. 5. Simulations of the phylogeny shown in 
Fig. 3, with the terminal branches extended in 
time up to approximately 22 years after the last 
estimated transmission of HIV from the dentist 
to a patient. Six years after transmission, the 
probability of detecting the dental clade falls off 
rapidly, which indicates that the success of the 
study depended on rapid investigation of the 
~roblem. 
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from parsimony. In the original study, the 
phylogeny of these lineages was inferred 
from restriction site maps of the entire viral 
genome, and all methods tested were suc- 
cessful at recovering the known phylogeny 
(6). The methods differed significantly in 
their ability to recover the branch lengths 
of the phylogeny (7), and the study also 
indicated a high degree of success in the 
reconstruction of ancestral restriction maps 
(>98% accuracy). However, the study did 
not discriminate amone methods on the " 
basis of their, ability to find the correct order 
of branching events, because all methods 
found the correct tree. 

We have now investigated this phylog- 
eny, using two additional data sets: restric- 
tion fragments and DNA sequences (33). 
Some authors recommend using the pres- 
ence or absence of restriction fragments 
(rather than the uresence or absence of 
restriction sites) to infer phylogenies, be- 
cause it is much easier to collect restriction 
fragment data than restriction site data 
(34). However, restriction fragments do 
not evolve independently (a single site gain 
results in the loss of one fragment and the 
gain of two others). and deletions can affect - ,, 

the fragments produced by many restriction 
enzymes simultaneously. Because of these 
problems, many authors argue that restric- 
tion site data should be preferred to restric- 
tion fragment data (35). This position is 
supported by the experimental T7 phylog- 
env. because all methods estimated an in- , , 

correct phylogeny when using high-resolu- 
tion restriction fragments, but they estimat- 

7 R  .. Actual 

6 R  - Estimated 

Fig. 6. Comparison of an observed phylogeny of 
viruses derived from bacteriophage T7 with an 
estimated phylogeny from the parsimony meth- 
od, on the basis of analysis of the terminal 
sequences (J through R). The numbers above 
the branches indicate the actual or estimated 
number of substitutions that occurred along the 
respective lineages. The actual numbers of sub- 
stitutions were determined by sequencing the 
ancestral viruses. Ranges of values on the esti- 
mated tree indicate that multiple, equally parsi- 
monious reconstructions of character states are 
possible. 

ed the correct phylogeny when using re- 
striction sites. This difference in the 
performance of analyses based on the two 
types of data has not been apparent in 
simulation studies, possibly because simula- 
tion studies rarely include deletions in their 
models of evolutionary change. 

The sequence data consist of 1091 base 
pairs across four genes of T7 (36). There are 
only 63 variable sites across the sequences, 
or about one-third as many variable char- 
acters as are present in the restriction site 
data (6). Competing methods do not per- 
form as well with the sequence data as they 
do with the restriction site data. With the 
sequence data, only parsimony and weight- 
ed parsimony estimate the correct tree, 
although a second tree (that differs by one 
branch) is equally parsimonious. Maximum 
likelihood (37), neighbor joining (38), the 
Fitch-Margoliash method (39), and UP- 
GMA (40) each estimate a single, incorrect 
tree that differs from the correct tree by one 
branch rearrangement. The less accurate 
overall performance of all methods with the 
sequence data does not necessarily imply 
that sequences are less reliable than restric- 
tion sites for inferring phylogeny, because 
there are fewer variable sites in the se- 
auence data set. However. if bootstra~ sam- 
ples equal in size to the sequence data set 
are selected from the complete restriction 
site data and compared to bootstrap samples 
of the sequence data, then the restriction 
site data do appear to be somewhat more 
reliable for inferring phylogeny for most 
methods (maximum likelihood is the ex- 
ception) (Fig. 7). A possible explanation 
lies in the non-independent evolution of 
some nucleotides within genes (7, 8); the 

Sequence data 
Restriction sltes 

Welghled Parsimony Neighbor UPGMA Maximum 
parsimony joining Ilkellhood 

Fig. 7. Comparison of phylogenetic analyses of 
the viral lineages derived from bacteriophage 
T7, on the basis of 1000 bootstrap samples of 
DNA sequences and 1000 bootstrap subsam- 
ples of the restriction site data that have the 
same number of variable sites as are in the 
sequence data. All methods found the correct 
tree with the complete restriction site data set; 
only parsimony and weighted parsimony found 
the correct tree with the complete sequence 
data set. 

variable restriction sites are distributed 
across the entire T7 genome and therefore 
are more likely to vary independently of 
one another. For these data. differential 
weighting of character states does not im- 
prove phylogenetic resolution, because rare 
substitutions are restricted to single termi- 
nal lineages and therefore are uninforma- 
tive under the parsimony criterion. On the 
basis of the simulated HIV phylogenies 
discussed earlier. the beneficial effects of 
weighting are expected only at higher rates 
of evolution than were observed. The rela- 
tively poor performance of maximum-like- 
lihood estimation on the restriction site 
data may be because the strongly biased 
substitution matrix violates the assumptions 
of the method (7). ~, 

Clearly, it will be necessary to construct 
additional experimental phylogenies that 
are based on other tree topologies and 
experimental conditions so that the gener- 
alitv of the results can be checked. In 
particular, predicted conditions of inconsis- 
tency need to be examined experimentally. 
Nonetheless, there is a high degree of cor-, 
respondence between the results from sim- 
ulations and the experimental phylogenies, 
although the experiments suggest addition- 
al complexities that need to be added to 
simulations. For instance, the comparison 
of restriction site data with restriction frag- " 
ment data indicates the need to incorporate 
insertion-deletion events into simulations 
as well as methods of analysis, and the 
sequence analyses confirm the importance 
of accounting for non-independence among 
nucleotide sites. In general, however, the 
experimental phylogenies confirm the rela- 
tively high levels of performance of the 
various methods of phylogenetic analysis 
under realistic conditions. 

Conclusions 

Both simulation studies and experimental 
phylogenies indicate that many methods of 
phylogenetic analysis are powerful enough 
to reconstruct evolutionary histories with a 
high degree of accuracy, as long as the rates 
of change of the observed characters are 
appropriate for analysis. This emphasizes 
the importance of methods that evaluate 
whether rates of evolutionary change in 
target sequences are appropriate for phylo- 
genetic analysis (41). Experimental phylog- 
enies also indicate that many methods may 
be fairly robust to violations of the under- 
lying assumptions, such as non-indepen- 
dence among nucleotide sites or deviations 
from simple models of evolution. It also is 
clear that differential weighting of charac- 
ter-state changes to reflect the observed fre- 
quency of the different types of transforma- 
tions may substantially improve the perfor- 
mance of phylogenetic methods (especially 
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at high rates of change) and that methods 
that have a strict assumption of equal rates of 
change (for example, UPGMA) show poor 
overall performance. 

Although most current methods of phy- 
logenetic analysis perform quite well, there 
clearlv is room for im~rovement. Further 
development of methods of accurately esti- 
mating the probability of changes among 
character states is needed in order to im- 
prove the incorporation of differential 
weighting in phylogenetic analyses (42). 
Such weighting methods could also be in- 
corporated into methods of calculating pair- 
wise distances, in order to improve the 
~erformance of distance methods. Maxi- 
mum-likelihood methods are undergoing 
considerable development (43), and their 
performance is likely to improve markedly 
as the relevant evolutionary parameters are 
identified and incorporated into analyses. 
However, methods of phylogenetic analysis 
that identify an optimality criterion (so that 
alternative solutions can be compared and 
ranked) are limited by computational con- 
*straints. For just 50 taxa, there are approx- 
imately 3 x possible rooted bifurcating 
solutions. and for the estimated 30 million 
living species on Earth, there are approxi- 
mately 10300,000~000 possible bifurcating 
phylogenies (44). Obviously, it is unrealis- 
tic to expect exact solutions to problems of 
this complexity. Although there has been 
considerable development of tree-searching 
algorithms in the past few decades (45), 
algorithms that take advantage of parallel 
processing need to be developed to achieve 
additional substantial improvement (46). 

Two decades ago, phylogenetic methods 
were rarely used except by systematists with 
a basic interest in the evolutionary history 
of life. Today, those methods are widely 
used in biomedical applications, in molec- 
ular investigations of genome organization 
and gene structure, in studies of the origin 
of new alleles and laboratorv strains. in 
comparative studies of ecology and behav- 
ior, in investigations of physiological pro- 
cesses, and in all fields in which biological 
comparisons are made among organisms. 
Phylogenetic analyses will play an increas- 
ingly important role as molecular biologists 
work in the coming decades to synthesize 
the comparative sequence information from 
the various genome projects. Studies of the 
accuracy of methods of phylogenetic analy- 
sis will be necessary to ensure that methods 
are developed and implemented that max- 
imize our ability to reconstruct evolutionary 
history. 
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RESEARCH ARTICLE 

Genetic Control of Programmed 
Cell Death in Drosophila 

Kristin White,*? Megan E. Grether,* John M. Abrams,*$ 
Lynn Young,§ Kim Farrell, Hermann Stellerll 

A gene, reaper (rpr), that appears to play a central control function for the initiation of 
programmed cell death (apoptosis) in Drosophila was identified. Virtually all programmed 
cell death that normally occurs during Drosophila embryogenesis was blocked in embryos 
homozygous for a small deletion that includes the reapergene. Mutant embryos contained 
many extra cells and failed to hatch, but many other aspects of development appeared quite 
normal. Deletions that include reaper also protected embryos from apoptosis caused by 
x-irradiation and developmental defects. However, high doses of x-rays induced some 
apoptosis in mutant embryos, and the resulting corpses were phagocytosed by macro- 
phages. These data suggest that the basic cell death program is intact although it was not 
activated in mutant embryos. The DNA encompassed by the deletion was cloned and the 
reaper gene was identified on the basis of the ability of cloned DNA to restore apoptosis 
to cell death defective embryos in germ line transformation experiments. The reapergene 
appears to encode a small peptide that shows no homology to known proteins, and reaper 
messenger RNA is expressed in cells destined to undergo apoptosis. 

Development and homeostasis of most 
multicellular oreanisms are criticallv denen- - , . 
dent on mitosis, differentiation, and cell 
death. In manv organisms. a large number , - - 
of cells die even in the absence of obvious 
external insults. For example, in verte- 
brates approximately half of the neurons 
generated during neurogenesis are eliminat- 
ed by cell death (1). This deliberate elimi- 
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nation of cells occurs in a morphologically 
distinct manner and is referred to as aDoD- 

L .  

tosis or programmed cell death; it is distinct 
from cell death provoked by external injury 
(2). Because apoptosis often requires RNA 
and protein synthesis, it is thought that it 
results from active, gene-directed processes 
(3). However, except in the nematode 
Camrhabditis elegans, no genes have been 
identified that are globally required for this 
Drocess (4). . , 

The many genetic techniques available 
for studying Drosophila make it an ideal 
model system in which to dissect the genet- 
ic control of programmed cell death and its 
role in develo~ment. Cell death occurs 
during the course of Drosophila develop- 
ment by apoptosis (5, 6). The onset of 
death is dependent on hormonal cues in 
some cases and on cell-cell interactions in 
others (7, 8). These types of interactions 
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demonstrate that cell death in Drosobhila. - ,  

like that in vertebrates, is under epigenetic 
control. 

In order to identify genes that are re- 
quired for programmed cell death in Dro- 
sophila, we examined the pattern of cell 
death in embryos homozygous for chromo- 
somal deletions. Because more than 50 
percent of the Drosophila genome is repre- 
sented by such deletion strains, we were 
able to rapidly screen a substantial fraction 
of the genome for cell death genes (9). 
Although these deletions typically include 
genes essential for viability, the large ma- 
ternal supply of nutrients, protein, and 
RNA (10) permits development well be- 
yond the stage at which cell death begins. 

In the wild-type embryo, a substantial 
amount of apoptotic cell death occurs in a 
relatively predictable pattern (6). These 
deaths can be rapidly and reliably detected 
in live embryos by staining with vital dyes, 
such as acridine orange (AO). These prep- 
arations allow an assessment of the effect of 
mutations on cell death in many different 
tissues, and the subsequent identification of 
genes that are globally required for pro- 
grammed cell death. 

Amone the 129 deletion strains exam- - 
ined, the majority (83 strains, 65 percent) 
did not appreciably affect the extent to 
which cell death occurred in the embryo. 
Among the remaining deletion strains, ap- 
proximately 20 percent resulted in excessive 
cell death, and some (13 percent) showed 
a decrease in the number of A 0  staining 
cells. Of all the strains examined, only 
three overlapping deletions, Df(3L) WR4, 
Df(3L)WRlO, andDf(3L)CatDHlo4 (I 1, 12), 
produced embryos that lacked all A 0  staining 
(less than 1 percent of wild-type amounts) at 
all stages of development (Fig. 1, A and B). 
These deletions overlap in genomic region 
75C1,2 on the third chromosome. We subse- 
quently obtained another mutation in thls 
region, hidH99 (H99) (13), that showed the 
same phenotype. Although this mutation 
appears cytologically normal, molecular 
analysis revealed that H99 is also a dele- 
tion that is internal to the overlap of the 
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