
class I spolIIE mutants but lost in class I1 
mutants, in which no SpoIIIE-like protein 
accumulates. 
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A Neurochemically Distinct Third Channel in the 
Macaque Dorsal Lateral Geniculate Nucleus 

Stewart H. C. Hendry* and Takashi Yoshioka 
The primate visual system is often divided into two channels, designated M and P, whose 
signals are relayedto the cerebral cortex by neurons inthe magnocellularand parvicellular 
layers of the dorsal lateral geniculate nucleus. We have identified a third population of 
geniculocortical neurons in the dorsal lateral geniculate nucleus of macaques, which is 
immunoreactivefortheasubunitof type IIcalmodulin-dependent proteinkinase.This large 
third populationoccupies interlaminar regions (intercalatedlayers)ventral to each principal 
layer. Retrograde labeling of-kinase-immunoreactive cells from the primary visual cortex 
shows that they provide the geniculocortical input to cytochrome oxidase-rich puffs in 
layers II and Ill. 

T h e  primate visual system is commonly 
viewed as an amalgam of two functional 
channels, designated M and P ( I ) ,  that 
include the magnocellular and parvicellular 
layers in the dorsal lateral geniculate nucle-
us (LGN) of the thalamus (2, 3). Projec-
tions from M and P reach the primary visual 
cortex (Vl), where the P channel is said to 

split into two streams, one that is selective 
for stimulus color and is represented by the 
cytochrome oxidase-rich puffs (or blobs) in 
the superficial layers, and another that is 
selective for stimulus form and is located in 
the surrounding cytochrome oxidase-poor 
interpuffs (4). From those points, cortical 
connections that are segregated to greater 
or lesser degrees reach the many extrastriate 
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-
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neurons in distinct small-celled layers or in 
interlaminar regions are the source of gen- 
iculocortical terminations to puff neurons 
(6, 7), in macaques the color-opponent 
properties of most puff neurons (8) and the 
apparently small size of the interlaminar 
cell population (9) have led to the conclu- 
sion that input from P neurons predomi- 
nates in the puffs of Old World primates 
(1 0). Here we viewed the geniculate popu- 
lation projecting to the puffs by combining 
immunoreactivity for the a subunit of type 
11 calmodulin4ependent (CaM 11) protein 
kinase (I I )  with retrograde transport of 
fluorescent markers from the superficial lay- 
ers of V1. The results showed that the 
direct geniculate input to the puffs arises 
from a large population of cells that are 
analogous to cells of a third, koniocellular 
or K channel in other primates, which 
display heterogeneous receptive properties 
and long response latencies (W cells). 

A section through the macaque LGN, 
stained with thionin to show all neurons, 
gave the impression that very few neurons 
exist outside the six principal layers (Fig. 
1A). The regions between the principal 
layers are often referred to as interlaminar 
zones and are frequently described as being 
relatively cell-free. However, in a section 
through the LGN that was immunostained 
for CaM I1 kinase (1 2). a large population 
of neurons was found intercalated between 
the principal layers and below layer 1 (Fig. 
1B). The neurons were numerous ventral to 
principal layers 1, 2, and 3; they were 
variable ventral to layer 4; and they were 
much more sparsely distributed ventral to 
layers 5 and 6. Following the nomenclature 
of Fitzpatrick and colleagues (6),  we refer to 
these layers collectively as the intercalated 
layers. 

Neurons immunoreactive for CaM I1 
kinase also formed thin immunostained 
bridges that ran through each principal 
layer (Fig. 1, B and C). Other immuno- 
stained cells were scattered dfisely 
through layers 5 and 6 and in the white 
matter dorsal to layer 6. Most neurons 
immunostained with CaM 11-kinase had 
small somata (8 to 10 Fm in diameter) that 
were substantially smaller than those of the 
neurons of the magnocellular and p a ~ c e l -  
lular layers. They gave rise to several im- 
munostained processes (Fig. ID) that 
formed dense plexuses in each of the inter- 
calated layers (Fig. 1E) and in the cell 
bridges between them (Fig. 1C). 

When deposits of Fast Blue or rhoda- 
mine dextran were made so that layer I or 
layers I to I11 of VI were included (Fig. 2, A 
and B), most retrogradely labeled neurons 
were kinase-imrnunoreactive (13) (Fig. 2, 
C through F) . Analysis of 16 deposits made 
in six monkeys showed that as long as the 
V1 deposit remained above layer IVA, only 

very few non-immunostained pa~cellular neurons. They occupied the intercalated 
neurons were retrogradely labeled (a total of layers and the cell bridges between two 
14 such cells out of several hundred labeled intercalated layers and included neurons 
by the superficial deposits). All others were scattered through layers 5 and 6 and 
CaM I1 kinase-immunostained intercalated through the overlying white matter. When 

Fig. 1. (A) Frontal section 
through macaque LGN 
stained with thionin. Dense 
collections of neurons are 
evident in principal layers 
1 through 6 and in an iso- 
lated cluster (double ar- 
rowheads), designated the 
S lamina, which represents 
a displaced part of layer 2 
(6). Many of the stained 
nuclei ventral to layers 5 
and 6 are those of neuro- 
glial cells. (B) Frontal sec- 
tion immunostained for 
CaM I I  kinase, showing the 
large population of immu- 
nostained neurons. Prelim- 
inary stereological analy- 
ses indicate that the immu- 
nostained neurons are as 
numerous as the unstained 
neurons in the two magno- 
cellular layers. (C) Photo- 
micrograph of kinase-im- 
munostained neurons ven- 
tral to layers 4, 5, and 6, 
and in cell bridges (ar- 
rows) within layers 4 and 5. 
(D and E) Photomicro- 1, 

graphs showing the mor- 
phological features of in- 
dividual kinase-immuno- 
stained neurons (D) and of C 

Fig. 2. (A and B) Photomi- 
crographs of frontal sec- 
tion through V1, containing 
part of a Fast Blue deposl 
(B) and histochemically 
stained for cytochrorne ox- 
idase (A). Arrows indicate 
the same blood vessel pro- 
files in the two micro- 
graphs. The deposit in- 
cludes layers I and I I  and 
the superficial half of layer 
Ill. Individual dots in layers 
IVB, V, and VI in (B) are 
neurons labeled by 
intracortical transport of 
Fast Blue. (C through F) 
Fluorescence photomicro- 
graphs of the same sec- 
tins through the LGN ipsi- 
lateral to the deposit in (B), 
showing neurons immu- 
nostained for CaM I I  kinase 
(C and E) and retrogradely 
labeled with Fast Blue (D 

- 
the plexuses formed by 
their processes (E). Scale bar: 200 pm in (A) and (B); 40 pm in (C); and 10 pm in (D) and (E). 

and F). Arrows indicate'neurons intensely labeled for both CaM I I  kinase and Fast Blue, and 
arrowheads show neurons intensely immunostained but weakly labeled with Fast Blue. Scale bar: 
300 pm in (A) and (B); 40 pm in (C) and (D); 15 pm in (E) and (F). 
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a deposit included layer IVA, many neu-
rons in the parvicellular layers were retro-
gradely labeled. 

The pattern of labeling from deposits in 
layers I to 111 of V1 appeared as an inter-
rupted line of projection, with clusters of 
labeled, kinase-positive neurons lining up 
along a radial line from the intercalated 
layer ventral to principal layer 1 to cells 
overlying layer 6 (Fig. 3, C and D). In 
contrast, deposits restricted to layer I of V l  
produced retrograde labeling only of the 
intercalated neurons in and ventral to lay-
ers 5 and 6 and in the white matter above 
layer 6 (Fig. 3, A and B). These findings 
suggest that the geniculocortical projection 
to layer I of V1 arises from dorsally located 
intercalated neurons, whereas the projec-
tion to layers I1 and 111 arises from the 
intercalated neurons in the ventral part of 
the LGN. 

Geniculocortical terminations above 
layer IVA and beneath layer I of the 
macaque V1 are restricted to periodic 
patches that line up precisely with the 
cvtochrome oxidase-rich ~uffsin these lav-
ers (14). Because the puffs contain a phys-
iologicallv distinct collection of neurons. 
many of which display color-opponen; 
properties (8), their neurons have been 
most frequently classified as members of the 
P channel (4, 8). Our data indicate that the 
puffs in the macaque V1 are innervated by 
neurons in the intercalated layers of the 
LGN and, through that geniculocortical 

Fig. 3. Drawlngs of sectlonsthrough LGNs from 
two monkeys,each ~gsilateralto two degosits of 
tracer (on; Fast Blue and one rhodamlne dex-
tran) In V1, elther restrlcted to layer I (A and B) 
or lncludlng layers I through I l l  (C and D) 
Neurons retrogradely labeled and Immunocy-
tochemically stained for CaM I I  kinase are 
lndlcated by dots. 

input, are members of a group that most 
closely resembles the koniocellular or K 
channel of other primates species (7, 15). 
By their geniculate input from the interca-
lated neurons and by the intracortical pro-
jection from M-recipient and P-recipient 
layers in V1 (16), the puffs appear to be 
sites in which three types of visual input 
converge. 

The contributions of M and P svstems to 
the physiological properties of coriical neu-
rons or to the psychophysically measured 
visual capabilities of alert monkeys have 
been tested by the placement of lesions or 
deposits of pharmacological agents in mag-
nocellular or parvicellular layers of the 
LGN (17). The general conclusion of these 
studies, in which the M or P channel was 
targeted selectivelv, has been that the two- , . 
channels converge early in the cortex, 
thereby contributing jointly to most physi-
ological properties and to many visual func-
tions. Our data indicate that neurons in a 
third channel that is anatomically and 
neurochemically distinct are distributed so 
that anv lesion or iniection in the LGN 
would eliminate part of their contribution 
to cortical physiology and to visual func-
tion. That contribution may include some 
color-opponent responses (18),  although 
color discrimination is decimated by par-
vicellular lesions (17), which leave most 
intercalated neurons intact. Instead, on 
the basis of comparative studies with other 
species of primates, the physiology of in-
tercalated neurons in macaques is likely to 
resemble that of a population of W cells 
(19), with heterogeneous functional prop-
erties, large receptive fields, and long re-
sponse latencies. 
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