
DPH molecules in PCD and yCD, which is 
consistent with their inclusion within a CD 
nanotube, further supported by the differ- 
ence between the DPH-CD spectra and the 
spectra of DPH alone in deuterated water 
(D,O) and in chloroform (CDCl,), which 
show different spectral features that are in 
the range of values for 6 of -6.5 to 7.5 
PPm. 

Our results suggest that DPH molecules 
provide a means for the linking of PCD or 
yCD into rodlike aggregates, or nanotubes, 
containing about 20 PCDs or 30 yCDs per 
tube on average. This is shown not only in 
the formation of the rigid nanotubes and 
their imaging by STM, but also in the 
achievement of an isolated, one-dimen- 
sional array of conjugated fluorescent mol- 
ecules that may have the potential to func- 
tion as a "molecular wire" or a photo switch 
at a supermolecular level through exciton 
formation or other processes (I 7). 
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Binding and Suppression of the Myc 
Transcriptional Activation Domain by p 1 07 

Wei Gu, Kishor Bhatia, tan T. Magrath, 
Chi V. Dang, Riccardo Dalla-Favera* 

An amino-terminal transactivation domain is required for Myc to function as a transcription 
factor controlling cell proliferation, differentiation, and apoptosis. A complementary DNA 
expression library was screened with a Myc fusion protein to identify proteins interacting 
with this domain, and a clone encoding the Rb-related p l07 protein was isolated. The pl07 
protein was shown to associate with Myc in vivo and to suppress the activity of the Myc 
transactivation domain. However, mutant forms of Myc from Burkitt lymphoma cells, which 
contain sequence alterations in the transactivation domain, were resistant to pl07-me- 
diated suppression. Thus, disruption of a regulatory interaction between Myc and pl07 may 
be important in tumorigenesis. 

T h e  myc proto-oncogene codes for a ubiq- 
uitously expressed nuclear phosphoprotein 
that funetions as a transcriptional regulator 
controlling cell proliferation, differentia- 
tion, and apoptosis (I) .  Structural alter- 
ations of the myc locus, caused by chromo- 
somal translocation, amplification, retrovi- 
ral insertion, or retroviral transduction, are 
consistently associated with tumorigenesis 
in different species (I). 

The expression of myc is tightly con- 
trolled at multiple levels, including tran- 
scription initiation and elongation and 
mRNA stability (I) .  Less is known about 
the mechanisms regulating Myc protein 
function. In vivo, Myc is found mainly in 
heterodimeric complexes with the related 
protein Max, and this interaction is medi- 
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ated by helix-loop-helix (HLH) and leucine 
zipper (LZ) domains present at the COOH- 
terminus of both proteins (2). The Myc- 
Max complexes stimulate transcription (3) 
and cell proliferation (4), whereas Max- 
Max homodimers or heterodimers formed 

FLAG-HMK Tx 
0, 

- Pocketdomain A 

Fig. 1. ldentificatlon of proteins associated wlth 
the NH,-terminal domain of Myc. (A) Schematic 
of normal Myc and the fusion protein (FLAG- 
HMK-Myc) used for screening the cDNA ex- 
pression library. Tx, transcriptional activation 
domain. (B) Schematic of full-length p107 and 
of the protein (p107-331) predicted from the 
sequence of the positive cDNA clone. This 
clone codes for most of the pocket domain. 
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Flg. 2. Association between Myc and p107 in vivo. (A) lmmunoprecipitates obtained with antibodies 
to p107 contain Myc. lmmunoblot analysis of immunoprecipitates from CB33-SVMyc cells obtained 
with normal rabbit serum (NRS), a polyclonal antibody to Max (anti-Max), a polyclonal antibody to 
Myc [anti-Myc(P)], a monoclonal antibody to Myc [anti-Myc(M)], an antibody to Rb (anti-Rb), or a 
polyclonal antibody to p107 [anti-pl07(P)]. (8) lmmunoprecipitates obtained with antibodies to Myc 
contain p107. lmmunoblot analysis of immunoprecipitates from CB33-SVMyc cells obtained with 
NRS, anti-Rb, anti-Max, anti-pl07(P), monoclonal antibody to p107 [anti-pl07(M)] or anti-Myc(P). 
The immunoblot was developed with anti-pl07(P). (C) Myc-pl07 interaction in cell lines containing 
physiologic levels of Myc. lmmunoblot analysis, done as in (A), of immunoprecipitates from the Bjab 
(lanes 1, 2, 3, 5) and EW-36 (4, 6, 7, 8) cell lines. Molecular sizes are indicated in kilodaltons. 

CMV p107(1-1W) 
CMV-pi07 H I/ J 

SKU14 Elb CAT 

- 
m e -  

- - 
m e -  

Fig. 3. Suppression of Myc-mediated transac- 
tivation by p107. (A) Plasmid expression vec- 
tors used for transient transfection assays in 
NIH 3T3 cells. Ga14. Myc, and p107 coding 
regions are indicated by amino acid numbers. 
CAT. chloramohenicol acetvltransferase aene: u--- 
CMV, ~~tome~alov i rus  pro&oter; SV, enhanc- GaCO Gal-MI-210) Gal-E2F1 WWI6 
er-promoter element from the SV40 virus; 5 x 
Ga14, five copies of the Gal4 binding site; E l  b. El  b promoter element. Control plasmids (not shown) 
include CMV, control plasmid devoid of p107 sequences and used as a control for CMV-pl07; 
Gal-0, control plasmid devoid of myc sequences and used as a control for Gal-Myc(1-210). (B) 
Results of the transient cotransfection assay. The indicated amounts of Gal-Myc(1-210) and 
CMVpl07 (or CMV, see below) plasmids were cotransfected into NIH 3T3 cells with 5 k g  (2 pmol) 
of G5-CAT by the calcium phosphate precipitation method as described (19). Values are expressed 
as the increase of CAT activity over the baseline [the value obtained by cotransfection of 
control-effector (Gal-0) and control-target (G5-CAT) plasmids] and are normalized for transfection 
efficiency (19). Transfections were done in triplicate and standard deviation bars are shown. (C) 
Representative data of CAT assays from transfected NIH 3T3 cells. In the lanes marked Gal-0, 2 
pmol of target (G,-CAT) or control-target plasmids (Go-CAT) were cotransfected to show the basal 
levels of transcription from G, in the absence of transactivation. In the lanes marked Gal-Myc(1- 
210), 2 pmol of G5-CAT was cotransfected with 0.03 pmol of Gal-Myc(1-210), together with 0.6 pmol 
of control vector (vector), the SV-Rb plasmid, or the plasmids expressing wild-type (CMV-pl07) or 
mutant (p107F846, pl07DE, or p107N385) p107. In the lanes marked Gal-E2Fl and Gal-VP1 6, 2 
pmol of G,-CAT was cotransfected with 0.03 pmol of Gal-E2F1 or Gal-VPl6 together with 0.6 pmol 
of control vector. SV-Rb, or CMV-pl07 plasmid. (0) Quantitation of experiment in (C). Values are 
expressed as in (6). 

by Max and Mad, another HLH-LZ pro- 
tein, act as transcriptional repressors (3-5). 
The activity o f  Myc-Max complexes re- 
quires a transcriptional activation domain 
present at the NH2-terminus o f  Myc, but 
absent from Max (2-4, 6). In other tran- 
scription factors, the activity o f  the tran- 
scriptional activation domains appears to  be 
regulated by specific protein-protein inter- 
actions (7). However, n o  such interaction 
has been identified for Myc, because an 
association between Myc and the retino- 
blastoma (Rb) tumor suppressor protein 
identified in vitro has not  been contirrned 
in vivo (8). The importance o f  the Myc 
transactivation domain is supported by the 
observation that the corresponding se- 
quences are frequently mutated in myc on- 
cogenes activated by chromosomal translo- 
cations in Burkitt lymphoma and mouse 
plasmacytoma (9). 

T o  identify proteins associated with the 
Myc NH,-terminal domain, we screened a 
A-gt 1 1 complementary DNA (cDNA) ex- 
pression library from a B cell lymphoma cell 
l ine (Daudi) with a 32P-labeled Myc fusion 
protein consisting o f  the NH,-terminal210 
amino acids o f  Myc linked to  a heart muscle 
kinase (HMK) domain (for labeling) and a 
FLAG domain (epitope for immune purifi- 
cation) (Fig. 1A) (1 0). Five distinct signals 
were identified after primary screening o f  3 
x lo6 phage plaques. After plaque purifi- 
cation, one positive clone displayed a 
strong interaction with the probe contain- 
ing the NH2-terminal Myc sequence, but 
no t  with a probe containing the COOH- 
terminal half o f  Myc. Further analysis o f  
this c D N A  insert revealed that it was iden- 
tical in sequence to  a portion o f  the gene 
codi& for p107, a growth suppressor pro- 
tein related to Rb (11). Like Rb, p107 
associates with viral transforming proteins, 
including adenovirus E1A and SV40 large 
T antigen (I I). In particular, the c D N A  
sequence corresponded to almost the entire 
"pocket" domain o f  p107 (Fig. lB), a re- 
gion essential for viral protein binding as 
well as for cell cycle regulation and growth 
suppression (1 2). Thus, the NH2-terminal 
half o f  Myc associates w i th  the pocket 
domain o f  p107 in vitro. 

T o  determine whether p107 and Myc 
associate in vivo, we performed immuno- 
precipitation experiments. Extracts from 
CB33-SV-Myc2.3 cells, an Epstein-Barr vi- 
rus (EBV)-transformed lymphoblastoid cell 
line, engineered to  express high levels o f  
Myc from a transfected gene (4, 13), were 
first immunoprecipitated at low stringency 
w i th  an antibody to  p107 (anti-pl07) and 
then immunoblotted w i th  an antiserum to 
Myc (anti-Myc) (1 4). Immunoprecipitates 
obtained with antibodies to  Myc or to  Max 
(anti-Max) were used as positive controls 
for the procedure and for the detection o f  
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Myc-Max complexes, respectively. We also 
analyzed immunoprecipitates obtained with 
an antiserum to Rb (anti-Rb) so that we 
could compare the binding of Myc to the 
related p107 and Rb proteins in vivo. The 
two normal (67- and 65-kD) Myc proteins 
were detectable in immunoprecipitates ob- 
tained with antibodies to p107, Myc, and 
Max, but not in those obtained with con- 
trol antiserum (Fig. 2A). Notably, Myc was 
not detectable in immunoprecipitates gen- 
erated by anti-Rb, although expression of 
Rb in these cells was confirmed by immu- 
noprecipitation analysis (1 5). 

To corroborate these findings, we did 
the reciprocal experiment: We searched 
for p107 in immunoprecipitates generated 
by anti-Myc. We detected p107 in immu- 
noprecipitates obtained with anti-Myc 
and anti-pl07 (positive control), but not 
in those obtained with an anti-Rb or with 
control serum (Fig. 2B). Notably, p107 
was also detectable in imrnunoprecipitates 
obtained with the anti-Max. As no direct 
interaction has been detected between 
p107 and Max in vitro (16), this result 
suggests that p107 can bind Myc when 
Myc is complexed with Max. Analogous 
results were obtained with immunoprecip- 
itates from two cell lines (Bjab and EW- 
36) (1 7) not transfected with Myc expres- 
sion plasmids (Fig. 2C), indicating that 
the Myc-pl07 interaction can occur under 
physiological conditions. The detection of 
p107 in imrnunoprecipitates generated by 
anti-Max-together with the fact that in 
vivo most Myc molecules are complexed 
with Max (2, 5)-suggests that at least 
some p107 is bound, via Myc, to Myc-Max 
complexes. 

To determine the functional conse- 
quences of p107 binding, we studied 
whether p107 affected the transactivation 
activity of Myc. We cotransfected a p107 
expression plasmid with a plasmid carrying 
NH2-terminal Myc sequences fused to the 
yeast Gal4 DNA binding sequences into 
NIH 3T3 cells and assayed transcription 
from a reporter gene linked to Gal4 bind- 
ing sites (Fig. 3A) (18, 19). Cotransfec- 
tion of the p107 plasmid suppressed the 
activity of the Myc transactivation do- 
main (Fig. 3B). The suppression was dose- 
dependent; substantial suppression (68% 
residual transactivation activity) was al- 
ready detectable at equimolar input of the 
p107 and Myc plasmids, and strong sup- 
pression (15 to 28% in different experi- 
ments) was seen at a 20:l ratio of the 
plasmids (Fig. 3). The p107 pocket do- 
main was both necessary and sufficient for 
suppression, as mutants (12) carrying 
point mutations (p107F846) or deletions 
of the entire domain (pl07DE) were im- 
paired in their suppressive activity, where- 
as a deletion mutant (p107N385) retain- 

ing only the pocket domain was active. 
We also found that Rb was completely 
inactive in suppressing Myc transactiva- 
tion although, as expected (7), it could 
suppress the E2F transactivation domain. 
Finally, p107 suppressed Myc but not the 
viral VP16 transactivation domain (Fig. 3, 
C and D) (1 5). Analysis of Myc deletion 
mutants (18, 20) in the same transactiva- 
tion assay indicated that the minimal Myc 
domain previously identified (18) as suffi- 
cient for transactivation (amino acids 41 
to 103) also mediates suppression by p107 
(21). Indirectly, this result also suggests 
that p107 binds to this same domain. 
Thus, these results indicate that Myc sup- 
pression by p107 is specific and requires 
the same functional domain (pocket) of 
p107 that mediates its growth suppressive 
effects. 

Multiple point mutations in the se- 
quences coding for the Myc transactiva- 
tion domain are common in myc onco- 
genes activated by chromosomal translo- 
cations in human lymphomas and mouse 
plasmacytomas (9). These mutations ap- 
pear to cluster within the minimal domain 
necessary for transactivation and suppres- 
sion by p107 (9). We tested whether 
mutant Myc proteins derived from three 
Burkitt lymphoma (BL) cell lines 
(P3HR1, ST486, and CA46; Fig. 4A) 
(22) displayed abnormal behavior in p107 

binding or suppression. The Myc-pl07 
complex was detectable in these three BL 
lines by the immunoprecipitation assay 
(1 6). Because only the mutant Myc pro- 
tein is expressed in these cell lines (23), 
this result indicates that the mutations do 
not eliminate Myc-plO7 binding, al- 
though variations in the affinity of binding 
of the two proteins could be missed by the 
nonquantitative two-step assay. In con- 
trast, marked differences were observed 
between wild-type Myc and the BL-de- 
rived mutant Myc proteins in the transac- 
tivation assay (Fig. 4, A and B) . Although 
all three mutants displayed transactivation 
activity comparable with that of wild-type 
.Myc, they were substantially less respon- 
sive to pl07-induced suppression. Com- 
parative analysis of titration curves gener- 
ated by varying the ratio of p107 to Myc 
expression plasmids confirmed that the 
mutants were virtually unresponsive to 
pl07-induced suppression (Fig. 4C). 

The mechanism by -which p107 sup- 
presses the Myc transactivation activity 
remains to be elucidated. It is possible that 
p107 prevents Myc or the Myc-Max com- 
plex from binding DNA. Alternatively, 
p107 may switch Myc from a positive to a 
negative regulator, analogous to the ac- 
tion of Rb on E2F (24). Finally, because 
the Myc transactivation domain interacts 
with components of the basal transcrip- 

Fig. 4. Resistance of lymphoma-derived Myc .....- .... ~ ....-..,,-.. / 
mutants to suppression by p107. (A) NIH 3T3 80 
cells were transfected with 2 pmol of G,-CAT, - 
0.03 pmol of the indicated expression plas- $ 
mids, and 0.6 pmol of CMV (-) or CMV-pl07 
(+) plasmids. (6) Quantitation of experiment in 
(C). Transactivation values obtained for the 3 
wild-type and mutant Gal-Myc constructs in the 
absence of CMV-pl07 did not differ significant- 2 
ly and are expressed as 100%. For each Gal- 
Myc construct, values obtained in the presence 
of CMV-pl07 are expressed as activity (per- 
cent) compared with that of CMV-transfected 
controls. (C) Titration of pl07-mediated sup- 
pression in wild-type versus mutant Gal-Myc 0 ,  

constructs. NIH 3T3 cells were transfected as in 
1  5 10 15 20 

(B) with increasing ratios of CMV-pl07:Gal-Myc IC WQIIR):IG~~-M~C(~~~)~ 

plasmids. Values are expressed as in (B). Ex- 
periments were done in duplicate and the average value is shown. 
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tion factor complex TFIID (25), p107 may 
suppress Myc-driven transcription by pre- 
venting Myc-TFIID association. The 
mechanism by which mutations in Myc 
prevent suppression by p107 also remains 
to be elucidated. 

Taken together, the interaction be- 
tween Myc and p107 shown here and the 
ubiquitous expression of both these pro- 
teins have implications for the mecha- 
nisms regulating cell cycle progression in 
mammalian cells. When overexpressed, 
p107 inhibits cell proliferation by blocking 
the cell cycle before S phase (1 1, 12). 
Unlike the situation with Rb, however, 
the pl07-mediated growth arrest cannot 
be rescued by cyclin A, cyclin E, or E2F1 
(12, 26), suggesting that p107 targets 
other cell cycle progression factors. The 
results of this studv indicate that Mvc mav 
be one of these faciors and suggest that thb 
growth-inhibitory activity of p107 may be 
mediated through suppression of Myc-Max 
transcriptional complexes. This notion is 
consistent with the observation that Mvc 
is rapidly synthesized when cells enter G1 
( I ) ,  a stage of the cell cycle when p107 is 
also present in various transcription com- 
plexes (27). We have also shown that Rb 
does not bind Myc; hence our results 
indicate that the highly related p107 and 
Rb proteins regulate different targets dur- 
ing the cell cycle. 

The observation that tumor-associated 
mutant forms of Myc escape suppression by 
p107 provides insight in the mechanisms 
leading to myc oncogene activation in BL. 
In these tumors, myc transcriptional regu- 
lation is disrupted by chromosomal translo- 
cations that juxtapose the gene to heterol- 
ogous promoter elements (23). We suggest 
that mutations within the transcrivtional 
activation domain may further deregulate 
Myc activity at the protein level by en- 
abling it to escape pl07-mediated modula- 
tion. This mav be a common mechanism 
for Myc deregulation, as mutations analo- 
gous to those observed in BL have been 
detected in tumor types that do not exhibit 
rnyc translocations (28). Overproduction of 
Myc by gene amplification, a common ab- 
erration in various tumor types ( I ) ,  or by 
p107 loss or inactivation, are other mech- 
anisms by which the Myc could escape 
regulation by p107 in tumor cells. 
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