
(which correspond to atrial and ventricu- 
lar depolarization, respectively) typical for 
mice. There was no evidence for cardiac 
arrhythmia in graft-bearing animals, de- 
spite the apparent presence of a high 
degree of intercellular coupling between 
grafted and host cardiomyocytes. 

The donor transgenic cardiomyocytes used 
in this study were mitotically active when 
grafted. Although it is presently not clear if 
cell cycling is a prerequisite for successful graft 
formation, the time course of [jH]thymidine 
incorporation and the use of donor transgenic 
cardiomyocytes from different stages of devel- 
opment should address this issue. If cardio- 
myocyte cycling is in fact required for graft 
formation, the ability to transiently induce 
proliferation in vitro could mean that biopsied 
adult cardiomyocytes could be used for autol- 
ogous grafting experiments. Recent studies 
using transformed cardiomyocytes derived 
from transgenic mice have identified three 
endogenous proteins that form stable com- 
plexes with SV40 large T antigen (13). By 
analogy to skeletal muscle (14), these proteins 
may mediate cardiomyocyte terminal differen- 
tiation and consequently represent potential 
targets (either independently or in combina- 
tion) with which to engender transient car- 
diomyocyte proliferation in vitro. In addition 
to fetal hearts, cardiomyocytes derived from 
embryonic stem cells (15) may be a viable 
source for donor cardiomyocytes. Intracardiac 
grafting of such cells might be useful for 
myocardial repair, provided that the grafted 
cells can contribute to mvocardial function. 
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Characterization of Type I Receptors for 
Transforming Growth Factor-P and Activin 

Peter ten Dijke, Hidetoshi Yamashita, Hidenori Ichijo,* 
Petra Franzen, Mari kki Lai ho, Kohei Miyazono, 

Carl-Henrik Heldin? 

Transforming growth factor-p (TGF-p) and activin exert their effects by binding to he- 
teromeric complexes of type I and type ll receptors. The type ll receptors for TGF-p and 
activin are transmembrane serine-threonine kinases; a series of related receptors, denoted 
activin receptor-like kinase (ALK) 1 to 5, have recently been identified, and ALK-6 is 
described here. ALK-5 has been shown to be a functional TGF-p type I receptor. A 
systematic analysis revealed that most ALKs formed heteromeric complexes with the type 
II receptors for TGF-p and activin after overexpression in COS cells; however, among the 
six ALKs, only ALK-5 was a functional TGF-P type I receptor for activation of plasminogen 
activator inhibitor-1, and only ALK-2 and ALK-4 bound activin with high affinity. 

T h e  TGF-P proteins belong to a family of rian inhibiting substance. Both TGF-Ps 
dimeric proteins that regulate the growth, and activins exert their effects through 
differentiation, and metabolism of many binding to specific cell surface receptors 
cell types ( I ) ,  and they are members of a (2). The TGF-P type I (53 kD) and type I1 
larger superfamily of structurally related (75 kD) receptors are indispensable for 
proteins that includes activins, inhibins, signal transduction and form heteromeric 
bone morphogenetic proteins, and Miille- complexes on ligand binding (3, 4). The 
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type I1 receptors for TGF-P (TPR-11) (5) 
and activin (ActR-11) (6) are both trans- 
membrane serine-threonine kinases. 

A series of receptor-like serine-threonine 
kinases have been identified that were termed 
ALK-1 to -5 (7-12). The sizes of ALKs are 
similar to the reported sizes of the type I 
receptors for TGF-P and activin (2,6). More- 
over, ALK-2 (Tsk 7L) (9) and ALK-5 (8) 
form heteromeric complexes with TPR-I1 and 
bind TGF-P, and ALK-5 forms a functional 
receptor complex (8, 13). ALK- 1 and ALK-2 
have been reported to bind activin (12, 14). 
We identified a sixth member of the ALK 
family and systematically investigated which 
ALKs can act as type I receptors for TGF-P 
and activin. 

We obtained the sixth clone, ALK-6, 
by screening a complementary DNA 
(cDNA) library from 12-day mouse embry- 
os with a   robe from a Dart of the kinase 
domain of ALK-4 under low stringency 
hybridization conditions (Fig. 1A). A typ- 
ical hydrophobic leader sequence is not 
observed in the NH,-terminus of the 
translated region; however, the ALK-6 
protein was efficiently expressed at the cell 
surface. RNA blot analysis revealed a 
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transcript of 7.5 kb in brain, and a weaker 
hybridization was seen with mRNA from 
the lung (Fig. 1B). A phylogenetic tree 
based on the similarities between the ki- 
nase domains of mammalian receptors 
with serine-threonine kinase activity (5- 
8, 15) is shown in Fig. 1C. The ALKs are 
more similar to each other than to the 
TGF-P and activin type I1 receptors. 

Afhnity cross-linking studies with "'I-la- 
beled TGF-P1 confirmed that COS-1 cells 
express low or undetectable amounts of 
TGF-P type I or type I1 receptors (1 6). Trans- 
fection of cDNAs for ALKs into COS-1 cells 
did not enhance binding of 1251-TGF-P1 (3, 
4, 9), apart from a very weak binding of 
1251-TGF-P1 to ALK-5 (16). When COS-1 
cells were cotransfected with TPR-I1 and 
ALK cDNAs, analyzed by affinity cross-link- 
ing, and then immunoprecipitated with a 
specific antiserum to TPR-11, each of the 
ALKs bound 1251-TGF-P1 and was coimmu- 
noprecipitated with the TPR-I1 complex, but 
ALK-5 formed such complexes more efficient- 
ly than the other ALKs (Fig. 2A). The size of 
the cross-linked complex was larger for ALK-3 
than for the other ALKs, consistent with its 
slightly larger size (7). When the cross-linked 
complexes were immunoprecipitated by anti- 
bodies specific for the different ALKs, each of 
the ALKs was immunoprecipitated in com- 
plex with TPR-I1 (Fig. 2B). ALK-5 formed a 
heteromeric complex with TPR-I1 more effi- 
ciently than did the other ALKs. 

We investigated which ALKs serve as 
TGF-P type I receptors in nontransfected, 
TGF-P-responsive cell lines. Several differ- 

ent cell lines were incubated with '''I- 
TGF-P1 and then cross-linked to the recep- 
tors. Proteins were immunoprecipitated 
with antisera to different ALKs. Only the 
antiserum to ALK-5 efficiently immunopre- 
cipitated the cross-linked type I and type I1 
receptor complexes in mink lung epithelial 
cells (MvlLu), porcine aortic endothelial 
(PAE) cells (Fig. 2C), and human foreskin 
fibroblasts (16), although ALK-2 and 
ALK-4 are also expressed in these cell lines 
and fibroblasts also express ALK-1 and 
ALK-3 (16). 

We investigated whether ALKs restored 
responsiveness to TGF-P in the R mutant of 
MvlLu cells (clone 4-2) that lacks functional 
TGF-P type I receptors but has intact type I1 
receptors (3). The R mutant cells were aans- 
fected with the cDNAs for ALKs or a control 
plasmid, and the production of plasminogen 
activator inhibitor (PA1)-1 was measured af- 
ter the addition of TGF-PI. Wild-type 
MvlLu cells and the R mutant cells trans- 
fected with the ALK-5 cDNA responded to 
TGF-P1 (8, 13) and produced a characteristic 
45-kD PAI-1 protein in the extracellular ma- 
trix (Fig. 2D). In contrast, the R mutant cells 
that were transfected with the other ALKs did 
not produce PAI-1 with the addition of TGF- 
pl. Thus, only ALK-5 efficiently formed a 
signaling TGF-P receptor complex with re- 
gard to PAI-1 induction. 

We also investigated whether ALKs bind 
activin in the presence of ActR-11. COS-1 
cells were cotransfected with the cDNAs for 
ALKs and ActR-I1 and affinity labeled with 
"'I-labeled activin A. Cross-linked proteins 
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B a - 
O Fig. 1. Cloning and tissue distribution of mouse ALK-6. (A) Predicted amino acid sequence of 
V) z mouse ALK-6 cDNA. A preferred cleavage site for the signal peptidase (23) is indicated by an 

C 
- arrowhead. The putative transmembrane domain is overlined (thick line). Cysteine residues found 

% z = W m L g $ g  3 ' " 2 5 S E "  in the extracellular domain are boxed. The borders of the kinase domain are marked by arrows, and 
I m , , - , ~ 8 '  kinase inserts are underlined (thin lines). The ALK-6 cDNA was cloned as described (24). This 

nucleotide sequence is deposited in European Molecular Biology Laboratory GenBank data library 
(accession number 223143). Abbreviations for the amino acid residues are A, Ala; C, Cys; D, Asp; 
E, Glu; F, Phe: G. Gly; H. His; I ,  Ile; K, Lys; L, Leu; M,  Met; N,  Asn; P. Pro; Q, Gln; R,  Arg; S, Ser; T, 
Thr; V, Val; W, Trp; and Y. Tyr. (B) Expression of ALK-6 mRNA in various mouse tissues. A blot with 
mRNAs from mouse tissues (Clontech) was hybridized as described (7) with a Sac I-Hpa I fragment 
(nucleotides 57 to 720) of mouse ALK-6. The filter was then subjected to autoradiography. The 
arrow indicates 7.5 kb. (C) A phylogenetic tree based on the amino acid sequence similarities 
between the kinase domains of mouse ALK-6 and other serine-threonine kinase receptors. ALK-1 to 
-5 are from human (7, 8) and ALK-6 is from mouse. TSR-I, ActR-l (12), and SKR-1 (10) are from 
human, R-1 to -4 are from rat (1 I ) ,  and Tsk 7L is from mouse (9). 
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were analyzed by SDS-polyacrylamide gel 
electrophoresis (SDS-PAGE) . After overex- 
pression in this system, all ALKs except for 
ALK-3 appeared to bind activin A in the 
presence of ActR-I1 (Fig. 3A). This could be 
more clearly demonstrated by affinity cross- 
linking and immunoprecipitation with antise- 
ra to ActR-I1 or ALKs. Both ALK-2 and 
ALK-4 bound lZ5I-labeled activin A and were 
coimmunoprecipitated with ActR-I1 by the 
antiserum to ActR-I1 or ALKs (Fig. 3B). 
The ALK-1, ALK-5, and ALK-6 also 
bound lZ5I-labeled activin A, but with 
lower efficiencies compared with ALK-2 
and ALK-4. ALK-3 showed little binding 
of lZ5I-labeled activin A. 

To investigate which ALKs are physiolog- 
ical activin type I receptors, we attempted to 
identify endogenous activin type I receptors 
expressed in activin-responsive cells. The 
MvlLu cells and R mutant cells express both 
type I and type I1 receptors for activin and 
produce PAI-1 on the addition of activin A 
(16). The MvlLu cells were labeled with 
lZ5I-labeled activin A. After cross-linking, 
the receptors were immunoprecipitated with 
antisera to ActR-I1 or ALKs. The type I and 
type I1 receptor complexes in MvlLu cells 
were immunoprecipitated only by the antisera 
to ALK-2, ALK-4, and ActR-I1 (Fig. 3C). 

Similar results were obtained in the R mutant 
cells (16). PAE cells do not bind activin 
because of the lack of type I1 receptors for 
activin; however, after transfection of a chi- 
meric receptor containing the extracellular 
domain and the COOH-terminal tail of 
ActR-I1 and the kinase domain of TPR-11, 
the cells (PAE-Chim A) bound lZ5I-labeled 
activin A and were growth-inhibited by the 
addition of activin A (16). Activin type I 
receptor complexes in PAEXhim A cells 
were immunoprecipitated by the ALK-2 and 
ALK-4 antisera (Fig. 3C). These results sug- 
gest that both ALK-2 and ALK-4 act as 
physiological type I receptors for activin in 
these cells. 

Because there are no known established 
cell lines that lack type I receptors or both 
type I and type I1 receptors for activin, we 
could not study the restoration of activin 
signals by the transfection of ALKs. In R 
mutant cells (clone RIB), ALK-2, in combi- 
nation with ActR-11, was reported to trans- 
duce an activin-induced transcriptional re- 
sponse (12). However, we found that the R 
mutant (clone 4-2 and RIB) bound activin A 
and produced PAI-1 on stimulation with ac- 
tivin A without transfection of ALKs or 
ActR-I1 cDNA, and no change in the 
amount of PAI-1 production was observed 

after cotransfection of ActR-I1 and ALKs 
(16). 

The type I receptors (ALKs) cannot 
bind ligand in absence of type I1 receptors 
and there exists no cross-binding between 
TGF-$ and activin to the type I1 receptors 
(6, 15). In contrast, binding of the ligands 
to type I receptors (ALKs) appears less 
strict, as many of them can bind TGF-$1 
and activin A in the presence of the respec- 
tive type I1 receptors when expressed in 
large amounts in COS-1 cells. However, 
binding studies with TGF-$- and activin- 
responsive MvlLu and PAE cells showed 
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Fig. 2. Blnd~ng of TGF-p to C 

aff inity-labeled with ' 1251- 
TGF-P1 in the presence or 
absence of excess unla- 
beled TGF-p1 (cold TGF- 
PI). Receptors were cross- 
linked and immunoprecipi- 
tated (25) with the antise- 
rum to TPR-II [(A) and lane 
7 in (B)] or the respective 
ALKs (B) (26). Each lane in 
(A) and (6) was analyzed 

ALKs and transduct~on of a 
TGF-b s~gnal by ALKs. (A 
and 6) COS-1 cells were 

Fig. 3. ldentification of activin type I receptors. 
(A) COS-1 cells were cotransfected with 
cDNAs for ALKs and ActR-ll (25) and analyzed 
for binding and cross-linking of 1251-labeled 
activin A in the presence or absence of excess 
unlabeled activin A (cold activin A) (25). (B) 
Binding and cross-linking of lZ51-labeled activin 
A to the transfected COS-1 cells and then 
imrnunoprecipitation with antisera to ActR-ll (11) 
or ALKs (1 to 6) (26). (C) Binding and cross- 
linking of 1251-labeled activin A to Mvl Lu cells 
and PAE-Chim A cells (28). Cell lysates were 
analyzed without (-) or with irnmunoprecipita- 
tion with antibodies specific for ALK-1 to -6. 
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in the same gel and ex- 
posed for an equal amount of time. (C) ldentification of the TGF-p type I receptor complex on MvlLu 
cells and PAE cells. The cells were affinity-labeled with 1251-TGF-p1 and cross-linked. Receptors 
were irnmunoprecipitated with antisera specific for ALKs or TpR-II. (D) TGF-p-induced PAI-1 
production was tested in wild-type (WT) Mvl Lu cells or in the R mutant cells after transfection of 
cDNAs for ALKs (27). PAI-1 was observed as a characteristic 45-kD band (22). 
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that only antisera against ALK-5 immuno-
precipitated cross-linked TGF-p type I re
ceptor complexes, and antisera against 
ALK-2 and ALK-4 immunoprecipitated 
cross-linked activin type I receptor com
plexes. Moreover, among the six ALKs, 
only ALK-5 efficiently restored the TGF-p 
activation of PAI-1 synthesis in mutant 
MvlLu cells. 

The low efficiency binding of TGF-p to 
ALKs other than ALK-5 and of activin to 
ALKs other than ALK-2 and ALK-4, when 
expressed together with type II receptors in 
COS-1 cells, appears not to represent true 
physiological interactions. The possibilities 
remain, however, that other ALKs may 
bind TGF-p2 or TGF-p3 or transduce 
TGF-p or activin signals other than PAI-1 
induction. Differences may also prevail be
tween different cell types. Alternatively, 
the other ALKs might be signaling recep
tors for other ligands in the TGF-p super-
family, such as bone morphogenetic pro
teins or Mullerian inhibiting substance, in 
combination with other type II receptors. 
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T h e developing chick limb serves as an 
experimental system to understand pattern 
formation (I) . The limb bud is composed of 
mesoderm and overlying ectoderm. Cap-
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ping nearly the entire apex of the bud is a 
pseudostratified columnar epithelium called 
the apical ectodermal ridge, which is spa
tially limited by the simple cuboidal dorsal 
and ventral limb bud epithelia (2). If the 
ridge is removed surgically it fails to regen
erate. Subsequently, only those parts of the 
limb already determined will develop (3). It 
has been proposed that the ridge, in a 
permissive way and without direct cell con
tact (4), maintains the mesodermal cells 
about 200 |xm beneath it in a rapidly 
proliferating and undifferentiated region 
called the progress zone (5). When cells 

FGF-2: Apical Ectodermal Ridge Growth Signal for 
Chick Limb Development 

John F. Fallon,* Alric Lopez, Maria A. Ros, Mary P. Savage, 
Bradley B. Olwin, B. Kay Simandl 

The apical ectodermal ridge permits growth and elongation of amniote limb buds; 
removal causes rapid changes in mesodermal gene expression, patterned cell death, 
and truncation of the limb. Ectopic fibroblast growth factor (FGF)-2 supplied to the chick 
apical bud mesoderm after ridge removal will sustain normal gene expression and cell 
viability, and allow relatively normal limb development. A bioassay for FGFs demon
strated that FGF-2 was the only detectable FGF in chick limb bud extracts. By distribution 
and bioactivity, FGF-2 is the prime candidate for the chick limb bud apical ridge growth 
signal. 


