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Unexpected Square Symmetry Seen by 
Atomic Force Microscopy in Bilayer Films 

of Disk-Like Molecules 

Nicholas C. Maliszewskyj, Paul A. Heiney,* Jack Y. Josefowicz, 
John P. McCauley Jr.,"fmos B. Smith Ill 

Thinfilms of disk-shapedmoleculesare expected to displayanisotropicoptical andtransport 
properties, leading to applications in optical display or sensor technologies. Bilayer Lang-
muir-Blodgettfilmsof monomerictriphenylenemesogens have beenstudied by atomicforce 
microscopy. The triphenylene cores of the constituent molecules tend to promote the for-
mation of columnar structures in the plane of the substrate and along the direction of 
deposition of the film. Atomic force microscopy images of bilayer Langmuir-Blodgettfilms 
revealedtwo types of structure, one correspondingto an aligned columnar structure and the 
other to an unusual square lattice, which may result from the superposition of columnar 
structures inadjacent layersthat intersectat near rightangles.Annealing such bilayers near 
the melting point of the bulk compound improved the structural ordering by reducing the 
angular spread of orientations associated with the well-developed columnar structure in 
some areas and by producing a more distinct square lattice in other areas of the sample. 

Langmuir-~lod~ett(LB) films (1, 2) have rod-like molecules, disk-shaped mesogens 
long been of interest both as model systems exhibitingcolumnar liquid crystallinephases 
for two-dimensional (2D) physics and for (3) have been shown to form Langmuir (4) 
their promise in technologicalapplications. and LB films (5, 6). The electronic conduc-
Although most research in this area has tivity of doped bulk discotic mesophases is, 
concentrated on LB films of amphiphilic highly anisotropic, with most of the conduc-
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tion occurring along the column axis (7). 
This suggests that thin films composed of 
disk-shaped molecules might also be expect- 
ed to display anisotropic transport proper- 
ties; such anisotropic films could potentially 
be used for optical displays and other elec- 
tronic devices such as pressure sensors (8). 

Surface pressure versus molecular area 
(11-A) measurements of Langmuir films of 
discogenic molecules (4, 6) indicate that 
discotic mesogens can adopt two possible 
types of packing at the air-water interface. 
Large, flexible cores with long substituents 
and highly polar anchor groups can drive 
molecules to sit with the cores parallel 
("face-on") to the interface. Altemativelv. , . 
strong pa interactions of the cores may lead 
to cofacial packing with the planes of the 
cores perpendicular ("edge-on") to the inter- 
face. It is reasonable to anticipate that the 
structure of the molecular film after being 
transferred to a solid substrate will be similar 
to that at the air-water interface. although - 
this is by no means assured. 

To make meaningful progress in the de- 
velopment of uses for films of these unusual 
mesogens, it is necessary to understand the 
microstructures present in these films and to 
correlate them with the technologically use- 
ful macroscopic anisotropic properties. 
There have been a number of studies of the 
macroscopic anisotropies manifested in mul- 
tilayer films of polymeric (6) and monomeric 
(9-1 1) discogenic compounds, but attempts 
to ascertain the microsco~ic structure on the 
basis of these observations have been primar- 
ily conjectural. Atomic force microscopy 
(AFM) (1 2) is a useful probe of microscopic 
structures, including those formed on non- 
conductive surfaces (1 3), down to angstrom 
resolution. AFM is especially well suited to 
surfaces that are extremely flat, such as LB 
films (1 4, IS), as well as to transferred, freely 
suspended liquid crystal films (1 6). AFM has 
also been used to image drop-coated films 
with some surface modification (1 7). 

We recently (4) reported the synthesis 
and characterization by II-A isotherms of 
the triphenylene monomer 6,7,10,11-tet- 
rakis (pentyloxy) -2,3-triphenylenedicarbox- 
ylic acid dibutyl ester (I) ,  followed by AFM 
and x-ray diffraction (XRD) measurements 
of the same compound (5). 
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dered hexagonal discotic") columnar liq- 
uid crystal mesophase at room temperature 

R = OC5HII with an intercolumnar spacing of 20 A 
R = COOC4H9 and have a phase transition to an isotropic 

liquid at 167°C. In the Dhd phase, mole- 
X X cules are arranged in hexagonal arrays of 

Bulk samples of 1 display a Dhd ("disor- columns. II-A isotherms indicate that 

0 0 25 0 50.0 nm 0.11 A.' 0.0 0.11 A-I 

Fig. 1. (A) Typical AFM image of a LB bilayer of 1 on alkylated Si. (B) FT of unheated bilayer image, 
showing a ring corresponding to the 18 %\ intercolumnar spacing, with a weak fourfold modulation. 

Fig. 2. On heating a bilayer film of 1 near the clearing point, two types of morphologies resolve 
themselves. (A) The columnar structure seen in the monolayer may become more distinct, although it is 
still possible to distinguish mismatches between layers. (B) FT of (A). Arcs similar to those seen in the 
monolayer are observed, with a somewhat larger azimuthal range. (C) Alternatively, a structure with 
approximately square symmetry may appear. (D) FT of (C). The fourfold modulation in the ring of 
correlations seen in the FT of Fig. 1 has sharpened up into spots with a roughly 90" angular separation. 
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these molecules adopt an edge-on packing 
at the air-water interface. Our AFM mea-
surements (5) indicated that in monolayer 
films of this compound the edge-on struc-
ture at the interface is transferred to a 
solid substrate, and that the molecules in 
the LB film are organized in columns with 
an intercolumnar spacing of -18 A and a 
spread in orientations of -35" about the 
direction of deposition of the film. Thus, 
the molecules are arranged into columns 
in the bulk, at the air-water interface (at 
least as inferred from molecular areas), 
and in monolayer films on the solid sub-
strate. XRD studies of multilayer films 
reveal that the material forms bulk drop-
lets of liquid crystal instead of lamellae, 
but for a small number of layers we believe 
that the film is essentiallv lamellar. Here 
we present measurements of bilayer films 
of 1, showing that in many cases the 
second layer is not formed with its col-
umns parallel to those of the first, as one 
would expect, but perpendicular. Further-
more, this unusual behavior persists after 
thermal annealing of the samples. 

Langmuir and LB films of 1 were pre-
pared as previously described (4, 5, 18). To 
form bilayer films, we dipped and then 
withdrew the substrate through the surface 
film without intervening cleaning of the 
surface. AFM images were obtained with a 
Nanoscope I11 AFM (19) at 21°C, as pre-
viously described (5, 20). A typical AFM 

Flg. 3. Possible models for structures observed 
in bilayer LB films of 1. (A) Parallel columnar 
structure. Columns in adjacent layers align in 
the same direction, as is seen in the bulk liquid 
crystalline phase. (B) Square lattice structure. 
Molecular directors in adjacent layers are rotat-
ed with respect to each other by -90°, giving 
rise to a height modulation with apparent 
square lattice symmetry. 

image of an as-prepared LB bilayer of 1 is 
shown in Fig. 1A. Some regions are char-
acterized bv the columnar ordering seen in" 
monolayer films ( 3 ,  as one might expect, 
but many regions exhibit an unusual struc-
ture with approximately square symmetry. 
The spacing between maxima is about 18 
A, the typical intercolumnar distance seen 
in the monolayer. A typical Fourier trans-
form (FT) for one of these images is shown 
in Fig. 1B. The intensity is confined in a 
ring whose radius corres~ondsto the inverse-
of the intercolumnar spacing. Four intensi-
ty maxima are evenly spaced around the 
ring. This image is consistent with that 
expected for a collection of square lattices 
with slightly different orientations. 

After heating (18) the substrate to 
167°C for 6 to 12 hours and then cooling 
back to room temperature, two distinct 
morphologies are seen in AFM images (Fig. 
2, A and C). In some cases, a columnar 
structure is observed. similar to that exDect-
ed if the columns oh the first and se'cond 
layers became parallel (Fig. 2A); when 
extended to an infinite number of layers 
this would yield the known hexagonal bulk 
columnar structure. FTs of AFM images of 
these regions resemble FTs of the moiolay-
er. In other regions. a more distinct sauare- , 

lattice is observed. The real space image is 
similar to that seen in the unheated film, 
but the order is even more distinctive (Fig. 
2C), and the FT (Fig. 2D) of these regions 
shows a sharpening of the 2D lattice max-
ima into Bragg spots indicative of long-
range order. Our models for these two 
structures are illustrated in Fig. 3. Although 
liauid crvstalline materials can often be 
aligned by the application of magnetic 
fields, annealing a bilayer LB film of 1 at 
165°C in a 3-kG field for -48 hours result-
ed in no observable enhancement of the 
columnar structure. 

The most likely explanation for the ob-
servationof a 2D lattice with approximately 
square symmetry is that the two layers each 
have columnar structure, but that the col-
umns in the top layer are roughly perpen-
dicular to those in the bottom laver: the, ! 

heights of the molecules in the top layer are 
thus modulated by the periodicity of the 
lower layer. We have previously shown (5) 
that the columns in an LB monolaver of 1 
lie predominantly along the dipping direc-
tion, but that there is a -35" spread in the 
orientations. To form our bilayers, we 
dipped and then withdrew the substrate, so 
that the two deposition directions were 
parallel. We would then naturally expect 
that the columns in the two layers would be 
roughly parallel, but that there would be a 
wide distribution of relative orientations of 
columns in the first and second layers. The 
fact that, after annealing, we see two pre-
dominant morphologies indicates that there 

may be two minima in the orientational 
potential energy: one at 0°, analogous to 
the liquid crystalline Dhd phase (as shown 
in Fig. 3A), and another, perhaps broader 
one at -90°, as is seen (Fig. 3B) in square 
lattice domains of the annealed films. Since 
the square structure has no analog in bulk 
samples of 1,the evolution of this structure 
upon multilayer formation is an intriguing, 
unresolved issue. 
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