
scenario, these models are stuck on one of 
the steps of the staircase, partway along the 
transition to irregular behavior. Further- - 
more, these results show how a large body of 
modeling and theory on simpler versions of 
ENS0 carries over to the case of complex 
behavior: The basic characteristics of El 
Nifio do not depend on the seasonal cycle- 
but its chaotic behavior does. 
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El Niiio Chaos: Overlapping of Resonances 
Between the Seasonal Cycle and the 
Pacific Ocean-Atmosphere Oscillator 

Eli Tiperman," Lewi Stone, Mark A. Cane, Hans Jarosh 
The El Niho-Southern Oscillation (ENSO) cycle is modeled as a low-order chaotic process 
driven by the seasonal cycle. A simple model suggests that the equatorial Pacific ocean- 
atmosphere oscillator can go into nonlinear resonance with the seasonal cycle and that with 
strong enough coupling between the ocean and the atmosphere, the system may become 
chaotic as a result of irregular jumping of the ocean-atmosphere system among different 
nonlinear resonances. An analysis of a time series from an ENS0 prediction model is 
consistent with the low-order chaos mechanism. 

E l  Nifio (roughly defined as the warming of 
the east equatorial water of the Pacific 
Ocean about every 3 to 6 years) and the 
accompanying Southern Oscillation signal 
in the atmosphere dramatically affect the 
Earth's climate on a global scale. The on- 
set, termination, and cyclic nature of the 
ENS0 events seem to be well explained by 
the linear equatorial wave dynamics and 
the delay oscillator idea (1 -5). However, 
their irregular occurrence and partial lock- 
ing to the regular seasonal cycle [El Nifio 
events usually peak in the northern winter 
(6)] have been difficult to explain. 

Here we use a simple delay equation 
model, including idealized seasonal forcing, 
to evaluate whether ENS0 might be a 
low-order chaotic process driven by the 
seasonal cycle. We then analyze the chaotic 
behavior of the ENS0 model of Cane and 
Zebiak [(7), hereafter CZ]. A companion 
paper (8) describes another test of this 
theory that uses a model that is fuller than 
our simple delay model and yet simpler (and 
therefore more accessible) than the CZ 
model from which we analyze a time series 
here. 

The delay oscillator mechanism can be 
described as follows: A positive sea-surface 
temperature (SST) perturbation along the 

eastern equatorial Pacific weakens the 
easterly winds above the equator [the 
Bjerknes hypothesis (9)]. The change in 
the winds excites a downwelling (deepen- 
ing) wave in the thermocline that travels 
eastward to the South American coast as 
equatorial Kelvin waves and an upwelling 
signal that travels westward as equatorial 
Rossby waves. The downwelling Kelvin 
waves enhance the warming off the coast 
of South America-the El Nifio event has 
begun. Subsequently, the westward-trav- 
eling upwelling Rossby waves are reflected 
from the western boundary of the Pacific 
Ocean as upwelling Kelvin waves, which 
travel eastward to counter the down- 
welling Kelvin waves, ultimately termi- 
nating the El Nifio event. 

We used a simple heuristic model of this 
accepted delay mechanism, including a 
Kelvin wave, one Rossby wave mode, and a 
dynamic link from mid-Pacific wind stress 
anomalies to these equatorial wave modes. 
To these we added a phenomenological 
seasonal forcing term representing the ef- 
fects of the numerous seasonally varying 
features of the equatorial Pacific ocean and 
atmosphere, such as wind amplitude and 
SST variations (10). Apart from the sea- 
sonal forcing term used here. our model is - 
basically a continuous version of the dis- 

E. Tziperman, L. Stone, H. Jarosh, Environmental crete &lay equation given in (5) and is 
Sciences and Energy Research, The Weizmann Insti- 
tute of Science, Rehovot 76100, Israel. similar to those of (1-4). The equation is 
M. A. Cane, ~amont-~oherty Earth Obse~atory, Co- written for h(t), the thermocline depth 
lumbia University, Palisades, NY 10964, USA. deviations from seasonal depth values at the 
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where t is time. L is the basin width. and o.. 
is the annual' frequency of the ihealize: 
seasonal forcing. The first term on the right 
represents a wind-forced Kelvin mode that 
travels at a speed CK, and thus takes a time 
L/(2CK) to reach the eastern boundary from 
the middle of the basin. The second term is 
due to the westward-traveling Rossby wave 
of speed C, excited by the wind at time t - 
[LICK + L/(2CR)] and reflected as a Kelvin 
wave. 

The function A(h) relates wind stress to 
SST and SST to thermocline depth. The 
nonlinear form of A (h) [as in (5), equation 
91 reflects the non-uniform stratification of 
the ocean. The slope of A(h) at h = 0, set 
by the parameter K, is a measure of the 
strength of the coupling between ocean and 
atmosphere (I I). 

As the nonlinearity (as measured by K) 
is increased, the model follows the univer- 
sal quasi-periodicity route to chaos (Fig. 1) 
(1 2). For small values of K, the model time 
series is perfectly periodic at the annual 
period of the forcing (Fig. lA,  upper pan- 
el). The phase-space trajectory degenerates 
to a single point because of the sampling at 

the annual frequency (Fig. lA,  middle pan- 
el), and the power spectrum shows a single 
peak at the annual frequency (Fig. lA,  
lower panel). 

As K increases (Fig. lB), a second fre- 
quency (on) arises, that of the natural 
oscillator of the Pacific ocean-atmosphere 
system (1-5). This second frequency is, in 
general, incommensurate with the annual 
frequency; the superposition of two incom- 
mensurate frequencies creates a quasi-peri- 
odic time series. The resulting oscillations 
are irregular but not chaotic (Fig. lB, upper 
panel); the phase-space reconstruction is a 
simple closed loop (Fig. IB, middle panel) 
(12), and the power spectrum shows two 
dominating frequencies (on = 0.29 and the 
annual oa = 1 year-') with many subhar- 
monics (Fig. lB, lower panel). These irreg- 
ular oscillations are not locked to the sea- 
sonal cycle. 

For even stronger nonlinearity (Fig. 
1C) , the system becomes mode-locked: The 
frequency of the nonlinear delay oscillator 
changes slightly to a simple rational multi- 
ple of the driving annual frequency: on = 
oaP/Q, with P and Q integers (in Fig. IC, 
on = oa/4). This model state corresponds 
to a nonlinear resonance between the driv- 
ing annual frequency (o,) and the natural 
oscillator frequency (on). The time series is 
periodic, and the phase-space diagram is a 
set of points whose number depends on the 

values of P and Q. The parameter regimes 
corresponding to the mode-locked solutions 
are also known as "Arnold tongues" (1 2). 

Finally, for sufficiently large nonlinearity, 
the system becomes chaotic (Fig. ID). The 
time series is irregular, the phase-space re- 
construction is of a strange attractor, and the 
power spectrum is broad and not made of 
distinct peaks as before. For small nonlinear- 
ity, thy model solution may be either quasi- 
periodic or mode-locked to a single nonlin- 
ear resonance defined by a single ratio P/Q. 
For larger nonlinearity, two or more mode- 
locked solutions (that is, solutions with dif- 
ferent ratios P,/Qi) may coexist; the nonlin- 
ear resonances are said to overlap in this 
case. The chaotic behavior is caused bv the 
irregular jumping of the system among the 
different possible resonances (12). The qua- 
si-periodicity route to chaos is a two-param- 
eter route. One Darameter governs the tran- - 
sition from quasi-periodicity to chaos as 
shown above; the second parameter governs 
the width of the mode-locked regimes, as 
investigated by Jin et al. (8). 

We suggest that ENS0 characteristics 
may be consistent with low-order chaotic 
behavior of the type described (Fig. ID), 
which would account for ENSO's irregularity 
and its locking to the seasonal cycle. Each 
mode-locked solution (Fig. 1C) is in perfect 
~ h a s e  correlation with the driving annual - 
frequency. But even in the chaotic regime, 
as the system jumps irregularly among reso- 
nances, it remains partially locked to the 

Frequency (years-') 

Fig. 1. The transition to chaos of the delay model. The data for these plots were obtained by running 
Eq. 1 for 1024 years to remove all transients and then for 1024 more years to obtain the data for the 
analyses. Shown are a time series of the model results (upper panels, thin lines), together with a 
12-month running average of these results (upper panels, thick lines); a phase-space diagram 
(middle panels); and a logarithm of the power spectrum (lower panels) for the model time series. 
The reconstructed phase-space diagram is obtained by plotting h(t) versus h(t + T), where T is the 
delay time (19) (not to be confused with the delay times of the delay oscillator), chosen here to be 
1 year. The time series for h(t) is subsampled at the frequency of the external forcing, that is, at 
1-year intervals (12). The four cases shown are (A) K = 0.9, (B) K = 1.2, (C) K = 1.5, and (D) K = 
2.0 and b+ = 1.5. The few points contained in the phase-space diagram in (A) and (C) are denoted 
by "x." 

Fig. 2. Correlation dimension estimates for (A) 
the CZ model (18) and (B) the linear Markov 
model. Shown is a log,-log, plot of the Grass- 
berger-Procaccia (15) correlation function as a 
function of the distance between trajectory 
points in reconstructed phase space. Each 
curve is for a different embedding dimension 
dE, with the uppermost for d, = 2 and the rest 
for dE increasing in steps of 2. The dimension of 
the attractor that produced the time series is 
given by the slope of the linear segment in 
these curves. The curves calculated for the CZ 
model contain a linear segment whose slope 
converges to a constant value as the embed- 
ding dimension increases. The dimension cal- 
culated from these curves is about 3.5. The 
slopes for the Markov model time series (B) do 
not seem to converge as quickly as those for 
the CZ model time series for increasing embed- 
ding dimension, which suggests instead a 
higher dimension, as is characteristic of ran- 
domly driven linear systems. 
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driving seasonal frequency: The maxima of 
the 12-month running average of the model 
time series [representing the ENS0 warm 
events (Fig. ID, upper panel)] occur every 2 
to 5 years and always within the same 4 
months of the calendar year-precisely the 
ENS0 characteristic missing in the existing 
simplified delay-oscillator ENS0 models. 
Earlier examinations of ENS0 as a low-order 
chaotic system either have used simplified 
models lacking the essential equatorial wave 
dynamics (although they discussed the lock- 
ing to the seasonal cycle) (13) or did not 
fully realize the importance of mode locking 
to the seasonal cycle and the mechanism of 
resonance overlapping (5). 

Is the irregularity of ENS0 indeed due to 
low-order chaos and not to random forcing 
(2)? The instrumental record of the real 
ENS0 data, which extends over slightly 
more than 100 years, is too short to identify 
chaos in an observed time series. Instead, we 
analyzed the results of the CZ ENS0 model 
(7), which has been used to predict several 
ENS0 events (1 4). 

The diagnostic tool we used to identify 
chaotic model behavior was the calculation 
of the phase-space correlation dimension 
(15) from monthly averaged East Pacific 
SST from a 1024-year run. The correlation 
dimension for this run is about d = 3.5 (Fig. 
2A), which suggests a chaotic dynamic sys- 
tem with a small [S (2d + I)] number of 
degrees of freedom. 

The correlation dimension calculations 
are prone to various artifacts (1 6), and in 
order to reduce this possibility we used a 
control time series of surrogate data (1 7) 
with the same characteristics (number of 
points, power spectrum) as the CZ model 
time series. We chose a time series from a 
linear Markov model built from the CZ 
model and driven by random forcing (1 8). 
The dimension estimate for the Markov 
model (Fig. 2B) indicates that this time 
series is random and distinguishable from 
the low-order dimension found with the CZ 
model. This result is consistent with the 
suggestion that the irregularity of ENS0 
events (at least in the CZ model) is not due 
to random noise (such as ocean weather 
phenomena present in the CZ model). 

We suggest that the natural oscillator of 
the equatorial Pacific ocean-atmosphere sys- 
tem can enter into nonlinear resonance with 
the seasonal cycle at several ~eriods of the 
oscillator (mostly 2 to 5 years). The coexist- 
ence of these resonances results in chaotic 
behavior that is due to the jumping of the 
system among the different resonances. This 
is a feature of the quasi-periodicity route to 
chaos (12). 

Much additional work is needed to fur- 
ther examine the relevance of these ideas to 
the observed ENS0 characteristics and to 
clarify the spatial and temporal mechanisms 
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Growth of Continental-Scale Metro-Agro-Plexes, 
Regional Ozone Pollution, and 

World Food Production 

W. L. Chameides,* P. S. Kasibhatla,"f. Yienger, H. Levy I I  
Three regions of the northern mid-latitudes, the continental-scale metro-agro-plexes, 
presently dominate global industrial and agricultural productivity. Although these regions 
cover only 23 percent of the Earth's continents, they account for most of the world's 
commercial energy consumption, fertilizer use, food-crop production, and food exports. 
They also account for more than half of the world's atmospheric nitrogen oxide (NOJ 
emissions and, as a result, are prone to ground-level ozone (0,) pollution during the 
summer months. On the basis of a global simulation of atmospheric reactive nitrogen 
compounds, it is estimated that about 10 to 35 percent of the world's grain production 
may occur, in parts of these regions where ozone pollution may reduce crop yields. 
Exposure to yield-reducing ozone pollution may triple by 2025 if rising anthropogenic 
NO, emissions are not abated. 

T h e  unprecedented increase in the stan- two factors: the development of high-in- 
dard of living of humanity since the Indus- put-high-yield agriculture, capable of feed- 
trial Revolution can be attributed in part to ing an increasingly urban population, and 

an urban-industrial infrastructure, heavily 
W. L. Chameides and P. S. Kasibhatla, School of Earth dependent on fossil fuels for the production 
and Atmospheric Sciences, Georgia Institute of Tech- 
nology, Atlanta, GA 30332, USA. and transport of manufactured goods (1). 
J. Yienger and H. Levy 11, Geophysical Fluid Dynamics The correlation between agriculture and 
Laboratory, Princeton University, Princeton, NJ 08542, fossil fuel burning is most pronounced in 
USA. three regions of the northern mid-latitudes 
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(Fig. 1): (i) eastern North America (25" to 
oratory, Princeton University, Princeton, NJ 08542, 500N and lo5" 60"W); (ii) (360 
USA. to 70°N and 10°W to 90°E); and (iii) 
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