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Spatiotemporal Chaos 
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T h e  term "chaos" denotes persistent ir- 
regular behavior of a deterministic system 
(that is, one in which externally applied 
noise can be neglected). Much of the work 
on chaos of the last 15 years has dealt with 
systems that could be represented by a 
small number of degrees of freedom, such as 
the logistic map y+, = %(l - y )  or the fa- 
mous Lorenz model involving nonlinear 
differential equations for three coupled dy- 
namical variables. Remarkably, at least near 
enough to the threshold of chaos, continu- 
ous experimental systems such as stirred 
chemical reactors or flows in certain fluid 
cells can be represented by such models. 

Methods have been developed for ana- 
lyzing chaotic behavior that are well 
adapted to these systems, such as measuring 
Lyapunov exponents and fractal dimen- 
sions of strange attractors by various "re- 
construction techniques" (1). Recently, 
however, chaotic systems have been stud- 
ied that are not reducible to a model with a 
small number of degrees of freedom, even 
at the onset of chaos. Such systems are said 
to be "large" and to display "spatiotempoml 
chaos," because their description appears to 
require a large number of chaotic elements 
distributed in space. 

An exciting advance in the study of spa- 
tiotemporal chaos is the development of a 
number of experimental systems that are 
well characterized and precisely controlled, 
and in some cases approach the ideal of 
large system size so that a statistically ho- 
mogeneous state, independent of boundary 
effects, seems to exist over much of the sys- 
tem. Such examples offer the real possibil- 
ity of understanding spatiotemporal chaos 
by means of a combination of theoretical, 
numerical, and experimental techniques 
that have been successfully applied to the 
study of regular spatial patterns in non- 
equilibrium systems (2). 

The rotating convection system is a rep- 
resentative example of recent work. The 
nonrotating case, the familiar Rayleigh- 
&nard convection, has served well as a ca- 
nonical system for the study of time-inde- 
pendent spatial patterns and their tran- 
sients. It is experimentally simple-a fluid 
held between two precisely horizontal 
plates with the lower plate carefully main- 
tained at a higher temperature than the up- 
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per plate-and well described theoretically 
bv the eauations of fluid dvnamics for a vis- 
cous fluid driven by the bubyancy force in a 
gravitational field. 

If a Rayleigh-Btnard system is rotated at 
an angular frequency Q about the vertical, 
then there exists a critical rotation rate Q 
such that for Q < 4, the usual ordered 
time-independent state is stable, whereas 
for Q > Q,, a chaotic state is found even at 
the threshold of the spatial pattern (3). 
This spatiotemporal state takes the appear- 
ance of a system of interacting domains 
with finite lifetimes (see figure). The do- 
main size mav be used to define a charac- 
teristic correlation length (4) of the system: 
Both the lifetime and this correlation 
length depend on the experimental param- 
eters. A numerically tractable model, based 
on previous experience in understanding 
stationary patterns and known as a "gener- 
alized Swift-Hohenberg equation" (3, has 
been used to model the system (6). In addi- 
tion, the proximity to threshold suggests 
that a weakly nonlinear theory can lead to 
a sim~ler model which ~rovides some ana- 
lytic Aderstanding of ;he behavior (such 
as the dependence of the correlation length 
on the distance to threshold) (7). An inter- 
esting prediction of this work, confirmed by 
the numerical modeling, is the bistability of 
the system-for the same parameters, the 
state may either be a time-independent one 
of ordered rolls or a disordered chaotic state, 
depending on how the system is prepared. 

Other examples of spatiotemporal chaos 
have been studied in recent years in sys- 
tems that allow different levels of quantita- 
tive characterization and statistical repro- 
ducibility and approach the ideal of a 
"large" system to various degrees. A par- 
ticularly dramatic example is a state discov- 
ered in the standard Rayleigh-&nard sys- 
tem, when for some parameter values an or- 
dered state of straight or weakly curved 
rolls breaks down to a spatiotemporally 
chaotic state consisting of elementary spiral 
structures which appear and disappear in 
an irregular fashion (8). This chaotic state 
has also been successfully modeled with an 
appropriate generalized Swift-Hohenberg 
equation (9). Other examples include vari- 
ous disordered states in convection systems 
(lo), electrohydrodynamic convection in 
nematic liquid crystals (I I), various pat- 
tern-forming chemical reactions (1 2), con- 
vection in binary fluid mixtures (13), and 
parametrically excited surface wave pat- 

terns in fluids (1 4). 
A number of theoretical questions are 

raised by these experiments: For instance, 
what broad classes of behavior exist in spa- 
tiotemporal systems? We are immediately 
stmck by questions familiar in equilibrium 
statistical mechanics: Can different phases, 
separated by sharp transition points, be 
identified within the chaotic state? How 
much, if any, of our understanding of the 
effect of thermal fluctuations on equilib- 
rium phases carries over to an understand- 
ing of the effect of chaotic fluctuations on 
nonequilibrium phases? Are there any uni- 
versal features at transitions to chaotic 
states or at transitions between different 
chaotic states, and if so, how do the univer- 

Chaotic domain stets: (A) in experiments on 
rotating convection in CO, at 20 atmospheres 
in a cylindrical cell (3, with hot and cold fluid 
visualized with a digitally enhanced shadow- 
graph; and (9) from numerical simulation of a 
generalized Swift-Hohenberg model (6), with 
positive values of the field shown black and 
negative values white. Both patterns continue 
to evolve in an irregular way. The similarity be- 
tween the numerical results and the portion of 
the experimental cell away from the boundaries 
suggests a boundary-independent spatiotem- 
porally chaotic state. 
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sality classes relate to the known ones in 
equilibrium svstems? In addition, there are 
also likely to be other, yet to be formulated 
questions that are specific to the nonequili- 
brium nature of the systems. 

What  are the appropriate qualitative 
measures of chaotic behavior? Is there a 
compact way of defining spatiotemporal 
chaos? And what quantitative measures are 
useful? The  conventional characterization 
techniques for chaos with a few degrees of 
freedom, such as Lyapunov exponents and 
fractal attractor dimensions ( I  ). involve ~ ,, 

the geometry of the motion in the full 
phase space of the system. For a spatially 
distributed system, the phase space is enor- 
mous, and it is not clear whether the tradi- 
tional diagnostics can be suitably modified. 
One would have to seek extensive auanti- 
ties to define intensive densities, which 
may become independent of the system size 
for large enough systems. T o  be practical, 
there must be ways to calculate appropriate 
quantitative measures by studying small 
subsystems of the spatially extended system. 

It is natural in our present stage of un- 
derstanding to attempt to characterize the 
systems in terms of correlation times and 
lengths. The  relation between correlation 
times or lengths defined through different 
properties (for example, from the two-point 
correlation function or from the attractor 
dimension) is unknown and could be quite 
complicated. However, if there is a diver- 
gence approaching some point in parameter 
space, a comparison between the diver- 
gences of different lengths or times be- 
comes particularly interesting. 

Are there simple reduced descriptions, 
emphasizing the collective behavior of many 
chaotic degrees of freedom, again analogous 
to the reduced long-wavelength descrip- 
tions provided by thermodynamics and hy- 
drodynamics for equilibrium systems? Are 
there simple limits that can be studied? 
One  possibly useful limit is weak coupling. 
A n  example is a set of mappings (such as 
the logistic map) placed on lattice sites, with 
the dynamics of each map weakly (through 
a coupling parameter g) dependent on  the 
dynamics of its neighbors in some specified 
way. For g = 0 the behavior is completely 
understood as the sum of the individual 
map properties, and the system is clearly ex- 
tensive. For example, if the dimension of the 
attractor of the single mau is d+. then the " 

dimension of N maps on  a lattice is Df = 

Ndf in this limit. It  is natural to  assume 
that for weak coupling (g << I),  such results 
continue to apply approximately, so that 
we expect Df = Np,  where p is a dimension 
density of the form p = df + O(g). For gen- 
eral values of the coupling, we still expect 
the dimension Df to  be extensive, but 
the  dependence of the dimension density 
p on  the coupling g is more complicated. 

Are there analytically tractable theo- 
retical models of s~atiotemooral chaos? In 
this connection, t i e  workLof Hansel and 
Sompolinsky (1 5) should be mentioned, 
where a lattice model of coupled m-compo- 
nent  elements is solved exactly in the limit 
as m goes to infinity and is reduced to a 
single degree of freedom in the presence of 
a Gaussian noise, which must then be de- 
termined self-consistently. 

Weak spatiotemporal chaos is a ubiqui- 
tous phenomenon in large nonequilibrium 
svstems near the threshold to Dattern for- 
mation. Recent experimental and theoreti- 
cal work has identified a number of well- 
characterized systems showing this behav- 
ior and yielding detailed data on the spa- 
tiotemporal evolution. What  is lacking is a 
simple phenomenology of spatiotemporal 
chaos that would reveal the essential fea- 
tures buried in the wealth of available data. 
Developing such an understanding is a 
challenge to theorists and experimentalists 
in the field of nonequilibrium phenomena. 
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Time Is the Essence: Molecular 
Analysis of the Biological Clock 

Terry L. Page 

Biological clocks underlie rhythmic pro- 
cesses from daily variation in photosynthe- 
sis in the single-celled dinoflagellates to the 
annual breeding cycles of some mammals. 
By the 1970s, it was clear that such clocks 
were ubiquitous and that their formal prop- 
erties were similar among phylogenetically 
diverse organisms. The stage was set for 
tackling one of the major questions: What  
is the mechanism responsible for the gen- 
eration of circadian (24-hour) oscillations? 

T h e  early demonstration of circadian 
rhythms in unicellular organisms had 
pointed to intracellular, biochemical pro- 
cesses as the underlying mechanism. T h e  
paradigm illustrated in the upper part of the 
figure has formed the, heuristic basis for the 
experimental attack on mechanism. The  
oscillator is a negative feedback loop in 
which individual elements function either 
as state variables (A-D) of the oscillator or 
as parameters (a-d), which mediate their in- 
teraction. Pathways for input to the loop 
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and for output complete the model. The  
biochemical ~ r o b l e m  was to  identifi the 
molecular cor'relates of the input, loo;, and 
o u t ~ u t  elements. 

One  approach to the problem was ge- 
netic. Could a mutational analvsis lead to 
the identification of genetic loci and the 
~roduc ts  of their expression that were part 
of the central mechanism? The isolation of 
single gene mutations that had profound ef- 
fects on the circadian phenotype initially 
generated much excitement. In particular, 
in the early 1970s K o n ~ p k a  (1)  and 
Feldman (2) discovered the per- locus in 
Drosophila melanogaster and the frq locus in 
Neurospora crassa, both in organisms in 
which the power of genetics was well estab- 
lished. These discoveries greatly raised the 
expectations of the field. Mutations in  both 
per and frq either abolished rhythm expres- 
sion or altered its period, suggesting that 
these loci were central to clock furiction. 
But in the ensuing decade little new infor- 
mation on  the biochemical function of 
these loci was forthcoming, and the genetic 
analysis seemed less productive than had 
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