
Experiments have shown that thermal 
fluctuations make proteins somewhat po­
rous, especially to small, nonpolar mole­
cules (15), Our analysis supports the con­
cept that the active site of AChE has a 
particularly porous wall at Trp84, which 
may be of functional importance- Kinetic 
energy gained by the catalytic residue 
His440 during hydrolysis may pass by way of 
the peptide linkage to Gly441, one of the 
channel residues- This energy might in­
crease the probability of opening, causing 
an organized sequence of catalysis and 
channel opening-
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Suppression of Ras-lnduced Transformation of 
NIH 3T3 Cells by Activated Gas 

Jianghao Chen and Ravi Iyengar* 
Conversion of external signals into proliferative responses may be mediated by interactions 
between signaling pathways that control cell proliferation. Interactions between Gas, the 
a subunit of the heterotrimeric guanine nucleotide binding protein that stimulates adenylyl 
cyclase, and Ras, an important element in growth factor signaling, were studied. Expres­
sion of activated Gas in NIH 3T3 cells increased intracellular concentrations of adenosine 
3',5'-monophosphate (cAMP) and inhibited H-Ras-stimulated DNA synthesis and mito-
gen-activated protein kinase activity. Activated Gas and 8-Br-cAMP suppressed H-Ras-
induced transformation of NIH 3T3 cells. Apparently, Gas inhibits proliferative signals from 
Ras by stimulating cAMP production and activating protein kinase A. 

M a n y heterotrimeric guanine nucleotide 
binding proteins (G proteins) participate in 
mitogenic signaling (I) . Of these, the Gs 

and its signaling pathway are probably the 
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most enigmatic. In a few systems, receptor 
activation of the cAMP pathway is mitoge­
nic (2), but in most systems raising the 
intracellular concentration of cAMP has no 
effect on cell proliferation- An activated 
mutant form of Ga s has been identified in 
pituitary tumors and postulated to be an 
oncogene (3), but has not been shown to 
transform cells in vitro- Thus Ga s might 
not produce a strong proliferative signal by 
itself, but it might have effects in conjunc-
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tion with other proliferative signals. Ras 
functions as a downstream element of sev- 
eral growth factor receptor tyrosine kinases 
(4). Both Ras and Gas belong to the 
guanosine triphosphatase (GTPase) super- 
family and can be converted to their active 
forms by mutations that block their innin- 
sic GTPase activities (5) .  We used such 
mutated forms to test the effects of expres- 
sion of activated Gas on H-Ras-induced 
proliferation and transformation of NIH 
3T3 cells. 

Gas, in which Gln 227 was changed to 
Leu (Q227L), was prepared by site-direct- 
ed mutagenesis (6). We transfected NIH 
3T3 cells with wild-type Gas, Q227L Gas 
(as*) in the vector pMam-Neo (pMN), or 
vector alone. Selected cells were individ- 
ually plated, and several clonal lines were 
established (7). Expression of the insert 
was induced by addition of dexamethasone 
and monitored by measurement of CAMP. 
Two NIH 3T3 clones that have a 60 to 
100% increase in basal cellular concentra- 
tions of CAMP were used for further stud- 
ies. We determined the effect of expres- 
sion of as* on H-Ras-stimulated mitoge- 
nesis (8) and mitogen-activated protein 
(MAP) kinase activity. Expression of as* 
did not alter the rate of DNA synthesis as 
assessed by [3H]thymidine incorporation. 
Cells transfected with an H-rus-contain- 
ing plasmid (pT24) showed a fivefold in- 
crease in the rate of DNA synthesis. Ex- 
pression of as* suppressed H-Ras-induced 
DNA synthesis (Fig. 1A). The mitogenic 
signal from Ras is transmitted through the 
MAP kinase pathway (9). We therefore 

Table 1. Accumulation of CAMP and MAP ki- 
nase activity in NIH 3T3 clonal cell lines ex- 
pressing mutant activated Gas. 

Cell lines CAMP MAP kinase 
activity 

For the CAMP measurements. the clonal cells were 
treated with dexamethasone (1 pM) on alternate days 
for 1 week. The cells were then labeled with l3H]ade- 
nine (2 &Ci/ml) for 24 hours. Accumulation of CAMP 
was measured for 30 min in the presence of 1-methyl- 
Sisobutylxanthine (1 mM). Cells were extracted in 
trichloroacetic acid (5%), adenosine triphosphate (1 
mM) and CAMP (1 mM). PHICAMP and PHIATP were 
separated by sequential chromatography on Dowex- 
50 and neutral alumina. CAMP accumulation is ex- 
pressed as [3H]cAMP/([3H]cAMP + [3H]ATP) x lo3. 
Values are means 2 SD of triplicate determinations. 
MAP kinase activity was assayed 2 weeks after trans- 
fection with H-ras plasmid (1 pg) as described (Fig. 
18). The MAP kinase activities are expressed as 
CPMI15 mint1 of cellular protein x As the 
MAP kinase activities are the sum of several fractions 
that comprise the peak, no error estimates could be 
obtained. The lines used were n-1, a clonal line 
derived from cells transfected with pMAM-neo, and 
a,*-3 and %'-I 4, clonal lines derived from cells trans- 
fected with pMAM-neoa,'. 

determined the effect of expression of as* 
on H-Ras-induced MAP kinase activity 
(1 0). Expression of as* suppressed H-Ras- 
stimulated MAP kinase activity by about 
SO%, similar to its effect on DNA synthe- 
sis (Fig. 1B). 

To establish that the observed reduc- 
tion of H-Ras-stimulated MAP kinase ac- 
tivity by as* was not due to clonal varia- 
tion, we examined another clonal line 
expressing as*. Both clonal lines express- 
ing as* showed increased intracellular 
concentrations of CAMP as compared to 
those of vector-transfected lines. Both 
lines also showed a 50% reduction in 
H-Ras-stimulated MAP kinase activity as 

compared to that of the control cell line 
(Table 1). 

Because H-Ras-induced mitogenesis 
leads to transformation of NIH 3T3 cells, 
we tested if the expression of as* affected 
the Ras-induced transformation of NIH 
3T3 cells (I  I). Expression of as* resulted in 
an almost total blockade of H-Ras-induced 
transformation at all concentrations of 
H-Ras plasmid tested (Fig. 2A). Transfec- 
tion efficiencies for the various clonal lines 
were very similar (12). To determine if the 
transfected H-Ras was expressed in similar 
amounts in both control and as*-expressing 
cells, we labeled proteins with [35S]methio- 
nine and immunoprecipitated H-Ras with a 

A NIH 3T3 clonal cell lines NIH 3T3 clonal cell l~nes 

C 

t 0 -- -- 
~ Q ~ C O  n-1 cq*-3 n ~ l  q ' - 3  
U L L ) U O  -- 

Column fraction uT24(ug) 0 1 

Flg. 1. Effects of expression of mutant activated Gs, on H-Ras-induced mitogenesis (A) and MAP 
kinase activity (Band C). Clonal NIH 3T3 lines n-1 and %*-3 were derived from cells transfected with 
pMAM-neo and pMAM-neoas*, respectively. The %*-3 line expressed as* when treated with 
dexamethasone. These cell lines were transfected with or without H-ras plasmid (pT24) and grown 
for 2 weeks, with dexamethasone added on alternate days. The cells were split on every third day. 
After the 2-week period, the cells were plated in 24-well plates and incorporation of PHIthymidine 
was measured. (A) Values are means of triplicate determinations. The results of one representative 
of four experiments are shown. (B and C) Cells (4 x 106 per 100-mm plate) were incubated for 20 
hours with DMEM without serum but with bovine serum albumin (0.1 %) to achieve quiescence. The 
cells were then extracted and MAP kinase activity was measured (10). (B) Column profiles of 
H-Ras-stimulated MAP kinase activity (in a .20-pl portion of column eluate) from control (D) and 
as*-expressing (A) clonal lines in one experiment. (C) A summary of four separate experiments. 
Values are means + SD. 

NIH 3T3 dona1 call lines 

Flg. 2. Effects of as* on H-Ras-induced transformation of NIH 3T3 cells. (A) Soft agar plates of 
cells from the clonal lines n-1 and as*-3 transfected with the indicated amounts of H-ras plasmid 
(pT24) by the calcium phosphate method. The transfected cells were treated with dexametha- 
sone (1 pM) to induce expression of %* and then plated onto soft agar to assess colony 
formation. (B) lmmunoprecipitation of Ras proteins extracted from NIH-3T3 cell lines, n-1 and 
as*-3, that were cotransfected with genomic NIH 3T3 DNA (20 pg) and pRSV 1.1 (1 pg) with or 
without H-ras plasmid (5 kg). The cells were cultured, labeled, and extracted. Ras was 
immunoprecipitated as described (13). (C) Several NIH 3T3 cell lines were transfected with 
various amounts of H-ras plasmid as indicated. The ability of transfected cells to form colonies 
in soft agar was determined. NIH 3T3 cells used were n-1, a vector-containing cell line; as-2, a 
cell line expressing exogenous wild-type Gq;  as*-3 and %*-14, cell lines expressing the mutant 
activated Gas. Values are means 2 SD of triplicate plates. The experiment in each panel is 
representative of three experiments except the immunoblotting, which was only done twice. 
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Fig. 3. Effects of 8-Br-CAMP 
on mitogenesis and H-Ras- 
induced transformation of 
RAT-1 and NIH 3T3 lines. (A) 
Cells were seeded into 24-well 
plates (1 x l o 3  cells per well) 
in DMEM (1 ml) wlth bovine 
calf serum (1 0%) and grown in 
the presence (0) or absence 
(B) of 8-Br-CAMP (1 pM). 
Each group included four 
wells. The number of cells was 
determined on days 3, 4, and 
5 (22). (B) The clonal line 
R-n-1 was grown overnight in 
the presence of 8-Br-CAMP (1 
pM) and transfected without 
or with the indicated concen- 
trations of H-ras plasmid. After 
transfections, the cells were 
cultured for 4 days with dexa- 
methasone treatment on alter- 
nate days before plating on 
soft agar plates. Values are 

A RAT-I clonal cell lines 
1207 

20u 0 
Days 1 10 

D NIH 3T3 clonal cell lines 

Doubling lime 

5 50 (1 pM 8-Br-CAMP) 20 hr 
r 4o *"3 
CI 5 30 (1 pM8.Br.cAMP) lshr 
= 

20 
0 

10 

Days 1 

RAT-1 clonal cell lines 

E NIH 3T3 clonal cell lines 
Doubling !!me 

3 0 0 ~  +n-1 18 hr 

mean; 2 '  SD of triplicate 
plates. (C) Several clonal lines of RAT-1 cells were transfected with various 
amounts of H-ras plasmid as indicated. The ability of transfected cells to 
form colonies in soft agar was determined. The RAT-I cells used were 
R-n-1, which contains the vector pMam-neo: R-a,-5, which expresses 
exogenous wild-type Ga,; and R-a,*-1, R-a,*-2, and R-a,*-7, which ex- 
press mutant activated a,. Values are means F SD of triplicate plates. (D) 
Cells from NIH 3T3 lines n-1 and n-3 were seeded into 24-well plates (1 x 
lo3  cells per well) in DMEM (1 ml) with bovine calf serum (10%) and were 
grown in the presence or absence of 1 p,M 8-Br-CAMP. In another ex- 

Days 1 10 

RAT-? clonal cell lines 

NIH 3T3 clonal cell lines 

periment (E) n-1, a,-2, and a,*-3 cells (6 x 1 O3 cells per well) were grown 
in the presence or absence of dexamethasone (1 pM). Each group 
included four wells. The numbers of cells were determined on the indicated 
days (22). (F) The clonal lines n-1 and n-3 were grown overnight in the 
presence of 8-Br-CAMP (1 pM) and transfected without or with indicated 
concentrations of H-ras plasmld. After transfections, the cells were cultured 
for 1 day in the presence of dexamethasone (1 FM) before plating on soft 
agar plates. Values are means ? SD of triplicate plates. The experiment in 
each panel is representative of three experiments. 

monoclonal antibody to Ras, Y 13-259 (1 3). 
Upon transfection with H-ras plasmid, 
there was an increase in the amount of 
H-Ras, and expression of a,* did not affect 
this increase (Fig. 2B). Therefore, the ob- 
served suppression of transformation did 
not result from suppression of synthesis of 
H-Ras. We also compared H-Ras-induced 
transformation of two separate clonal lines 
expressing a,* to one expressing exogenous 
wild-type Gas and a control clone trans- 
fected with vector only. Expression of ex- 
ogenous wild-type Gas did not increase 
cellular CAMP concentrations (12) and did 
not suppress transformation at any of the 
concentrations of H-ras plasmid tested, but 
in both clonal lines expression of o~,* 
blocked H-Ras-induced transformation at 
all concentrations of H-Ras plasmid tested 
(Fig. 2C). 

Decreasing the cellular concentrations 
of cAMP promotes cell division in RAT-1 
cells (14), but no such effects have been 
described for NIH 3T3 cells. We tested 
whether increasing the intracellular con- 
centrations of cAMP or expression of a,* 
could suppress mitogenesis in RAT-1 or 
NIH 3T3 cells. Addition of 8-Br-CAMP 
suppressed the proliferation of Rat-1 cells 
(Fig. 3A) and suppressed H-Kas-induced 
transformation (Fig. 3B). Expression of a," 
also suppressed H-Ras-induced transforma- 
tion of the RAT-1 lines (Fig. 3C). In 

contrast, addition of 8-Br-CAMP or expres- 
sion of a,* did not affect the proliferation of 
NIH 3T3 cells (Fig. 3D). However, in two 
control clonal lines, incubation with 8-Br- 
CAMP resulted in suppression of H-Ras- 
induced transformation (Fig. 3E). 

To ascertain if a," suppressed H-Ras- 
induced transformation by causing synthe- 
sis of CAMP and activation of protein 
kinase A (PKA), we studied the effect of a 
dominant negative PKA subunit on the 
effect of a,*. The dominant negative reg- 
ulatory subunit blocks activation of PKA 
in NIH 3T3 cells (1 5). We cotransfected 
the dominant negative PKA regulatory 
subunit or wild-type PKA regulatory sub- 
unit along with two concentrations of 
H-ras ~lasmid into control and a"*-ex- 
pressing cells. Expression of dominant 
negative but not the wild-type PKA com- 
pletely blocked the suppressive effect of 
a,* expression on H-Ras-induced trans- 
formation (Fig. 4). These results indicate 
that the effects of a,* are mediated 
through CAMP and PKA. 

Ras signaling through the MAP kinase 
pathway is crucial for proliferative re- 
sponses (9). Both the duration (16) and 
amplitude of MAP kinase activity may be 
important factors when MAP kinase acti- 
vation gets converted into a biological 
response. In some situations partial inhi- 
bition of MAP kinase activity appears to 

translate into an almost total loss of bio- 
logical response (Fig. 1) (1 7). It is possible 
that negative biochemical integration be- 
tween the signaling pathways may be 
achieved by lowering the positive signal 
below the threshold that triggers the bio- 

NIH 3T3 clonal cell lines 

n-1 a,'-3 n-1 cg*-3 

pT24 (kg) 0.2 1 
WT - - + - . - + .  

AB - - - t - - .  

Fig. 4. Effects of the dominant negative PKA 
regulatory subunlt expressed from the plas- 
mid (pHL-REV,,neo, 10 ~ g )  (AB) or control 
(wild-type PKA regulatory subunlt in pHL- 
REV,,neo, 10 pg) (WT) on H-Ras-lnduced 
transformation in NIH 3T3 clonal llnes n-1 and 
a,*-3 Cells were cotransfected with indicated 
amounts of H-ras plasmid wlthout or with the 
vectors encoding the PKA regulatory sub- 
units After transfect~ons, the cells were in- 
duced with dexamethasone (1 FM) and plated 
onto soft agar plates to score for colony 
formation. Values are means ? SD of triplicate 
determ~nations. The result in each panel is 
representative of three experiments. 
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logical response. Alternatively, as* may 
inhibit transformation by inhibiting other 
signaling pathways. 

Alteration in cellular concentration of 
CAMP by itself does not affect regulation of 
mitogenesis in NIH 3T3 cells or in most 
other mammalian cell types (18). Muta- 
tions in ras occur commonly in human 
tumors (19). Thus activated Gas may sup- 
press transformation of other cell types. 
Because expression of a,* only modestly 
increases the cellular concentrations of 
CAMP, it is possible that the blockade of 
transformation by a,* can be achieved 
without raising cellular CAMP concentra- 
tions to deleterious levels. NIH 3T3 cells 
are on the veree of transformation (20) and " . , 

can be transformed without the introduc- 
tion of foreign oncogenes (21). The use of 
such a system heightens the potential sig- 
nificance of our observations by indicating 
that a,* can block the transformation of 
cells that have substantially progressed 
through the multiple steps involved in neo- 
plastic transformation. Thus targeted im- 
plantation of a,* may be a useful strategy 
for preventing the development of cancers 
in some predisposed cells or tissues. 
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Fusion of a Kinase Gene, ALK, to a Nucleolar 
Protein Gene, NPM, in Non-Hodg kin's Lymphoma 

Stephan W. Morris,* Mark N. Kirstein, Marcus B. Valentine, 
Kristopher G. Dittmer, David N. Shapiro, David L. Saltman, 

A. Thomas Look 
The 2;5 chromosomal translocation occurs in most anaplastic large-cell non-Hodgkin's lym- 
phomas arising from activated T lymphocytes. This rearrangement was shown to fuse the NPM 
nucleolar phosphoprotein gene on chromosome 5q35 to a previously unidentified protein 
tyrosine kinase gene, ALK, on chromosome 2p23. In the predicted hybrid protein, the amino 
terminus of nucleophosmin (NPM) is linked to the catalytic domain of anaplastic lymphoma 
kinase (ALK). Expressed in the small intestine, testis, and brain but not in normal lymphoid cells, 
ALK shows greatest sequence similarity to the insulin receptor subfamily of kinases. Unsched- 
uled expression of the truncated ALK may contribute to malignant transformation in these 
lymphomas. 

Large-cell lymphomas comprise -25% of 
all non-Hodgkin's lymphomas in children 
and young adults. Approximately one-third 
of these tumors have a t(2;5)(p23;q35) 
chromosomal translocation (I) ,  which sug- 
gests that rearrangement of cellular proto- 
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oncogenes on these chromosomes contrib- 
utes to lymphomagenesis. Lymphomas with 
the t(2;5) typically involve lymph nodes, 
skin, lung, soft tissue, bone, and the gas- 
trointestinal tract and arise predominantly 
from activated T lymphocytes (2). The 
malignant cells express interleukin-2 (IL-2) 
receptors and CD30 (Ki-1) antigen, a re- 
ceptor for a ligand related to tumor necrosis 
factor (3). By the updated Kiel lymphoma 
classification. most tumors with the t(2;5) . . 
are classified as anaplastic large-cell non- 
Hodgkin's lymphomas (4). 

To clone the genes altered by the t(2;5), 
*To whom correspondence should be addressed we used a positional strategy that was based 
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