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Heat-Inducible Degron: A Method for Constructing 
Temperature-Sensitive Mutants 

R. Jiirgen Dohmen,* Peipei Wu," Alexander VarshavskyS 
A temperature-sensitive (ts) mutant retains the function of a gene at a low (permissive) 
temperature but not at a high (nonpermissive) temperature. Arg-DHFR, a dihydrofolate 
reductase bearing an amino-terminal (N-terminal) arginine, is long-lived in the yeast Sac- 
charomyces cerevisiae, even though arginine is a destabilizing residue in the N-end rule 
of protein degradation. A tsderivative of Arg-DHFR was identified that is long-lived at 23°C 
but rapidly degraded by the N-end rule pathway at 37°C. Fusions of ts Arg-DHFR to either 
Ura3 or Cdc28 of S. cerevisiaeconfer ts phenotypes specific forthese gene products. Thus, 
Arg-DHFRts is a heat-inducible degradation signal that can be used to produce ts mutants 
without a search for ts mutations. 

Conditional mutants make ~ossible the 
analysis of physiological changes caused by 
inactivation of a gene or a gene product and 
can be used to address the function of any 
gene. Several types of conditional mutants 
and methods for producing them have been 
developed (1,  2) since Horowitz's demon- 
stration of the utility of ts mutams ( 3 ) ,  but 
the ts phenotype is still the one most 
frequently used (4, 5). One limitation of 
the ts approach is the uncertainty as to 
whether a given gene can be mutated to 
yield a ts product. For example, only six loci 
were identified after repeated searches for ts 
lethal mutations mapping to the S. cereoisi- 
ae chromosome I, which contains many 
essential genes (5). Another problem with 
conventional ts mutations is that they are 
often too leaky to be useful (4). We now 
describe a strategy for producing ts mutants 
that does not require a search for a ts 
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mutation in a gene of interest. This strat- - 
egy is based on a portable, heat-inducible 
N-degron (Fig. 1). 

The N-degron is an intracellular degra- 
dation signal whose essential determinant is 
2 "destabilizing" N-terminal residue of a 
protein. A set of N-degrons containing 
different destabilizing residues is manifested 

u 

as the N-end rule, which relates the in vivo 
half-life of a orotein to the identitv of its 
N-terminal re'sidue (6). In eukaryo;es, the 
N-deeron consists of at least two determi- - 
nants: a destabilizing N-terminal residue 
and a specific internal Lys residue (or resi- 
dues) of a substrate (6, 7). The Lys residue 
is the site of attachment of a multiubiquitin 
chain (6-8). Ubiquitin is a protein whose 
covalent conjugation to other proteins 
~ l a v s  a role in a number of cellular Dro- 
& ,  

cesses, primarily through routes that in- 
volve protein degradation (6, 8). 

We constructed a thermolabile protein 
that becomes a substrate of the N-end rule 
pathway only at a temperature high enough 
to result in at least partial unfolding of the 
protein. This unfolding activates a previ- 
ously cryptic N-degron in the protein by 
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increasing exposure of its destabilizing 
N-terminal residue, by increasing mobilities 
of its internal Lys residues, or because of 
both effects at once. Since proteolysis by 
the N-end rule pathway is highly processive 
(6), one can make any protein of interest 
conditionally short-lived by expressing it as 
a fusion to the thus engineered thermo- 
labile protein, with the latter serving as a 
portable, heat-inducible N-degron (Fig. 1). 

Arg-DHFR, a variant of the 21-kD 
mouse DHFR in which the wild-type N-ter- 
rninal Val is replaced by Arg, is long-lived 
in the yeast S. cerevisiae [half-life (tin) > 6 
hours at 30°C], even though Arg (unlike 
Val) is a destabilizing residue in the N-end 
rule (7). We searched for a ts allele of 
Arg-DHFR whose cryptic N-degron would 
be activated at 37°C but not at 23°C. A 
plasmid (pPW17R) was constructed that 
expressed Ub-Arg-DHFR-ha-Ura3 in S. 
cerevisiae (9). The ubiquitin (Ub) moiety of 
this fusion protein was required for produc- 
tion of the desired residue, such as Arg, at 
the N-terminus of the DHFR moiety. Ubiq- 
uitin fusions are rapidly cleaved in vivo 
after the last residue of ubiquitin, making 
possible the production of otherwise iden- 
tical proteins bearing dgerent N-terminal 
residues (6) (Fig. 1). The "ha" epitope 
allowed irnmunoprecipitation of the Arg- 
DHFR-ha-Ura3 fusion with a monoclonal 
antibody to ha (anti-ha) (9). The S. cere- 
visiae Ura3 moiety made possible selections 
f o r b  against the fusion's presence in cells 
(Fig. 2A), while also s e ~ n g  as a test 
protein (Fig. 1). 

We camed out a screen for derivatives of 
pPW17R that could confer onto Ura- cells 
a ts Ura+ phenotype whose ts aspect re- 
quired the N-end rule pathway (9, 10). 
This screen yielded two mutant plasmids 
with the desired properties: at 23"C, these 
plasmids conferred a Ura+ phenotype, 
whereas at 37°C they conferred a Ura- 
phenotype in [UBRl ura31 cells but a Ura+ 
phenotype in congenic [ubrlA ura31 cells 
(Figs. 1 and 2A). The [ubrlA ura31 strain 
lacked the N-end rule pathway because it 
lacked N-recognin (encoded by UBR I ) , the 
recognition component of the pathway (6, 
1 1, 12). The relevant change in both plas- 
mids was a single missense mutation that 
replaced Pro with Leu at position 66 in the 
DHFR moiety of Ub-Arg-DHFR-ha-Ura3, 
yielding Ub-Arg-DHFRP-ha-Ura3 (1 0). 
The Pro66 region of DHFR connects its a11 
helix to the PC strand (1 3). 

We then used Arg-DHFRt" to produce a 
ts version of the S. cerevisiae Cdc28 protein 
kinase-an essential component of the cell 
cycle oscillator (1 4). The chromosomal 
CDC28 gene was replaced with a gene that 
expressed Ub-Arg-DHFRt"-ha-Cdc28 (1 5). 
The resulting S. cerevisiae strain was com- 
pared to the wild-type (CDC28) strain 

1274 

YPHSOO. Whereas the wild-type strain 
grew at both 23°C and 37"C, a representa- 
tive strain expressing Ub-Arg-DHFRm-ha- 
Cdc28 (instead of the wild-type Cdc28) 
grew at 23°C but was inviable at 37°C (Fig. 
2B). The morphology of these cells was 
examined after a temperature upshift in 
liquid culture. After 2 hours at 37"C, cells 
that expressed Ub-Arg-DHFRt"-ha-Cdc28 
became larger but lacked buds (GI phase 
morphology); however, by 4 hours at 37"C, 
many of these cells developed abnormal 
(elongated) buds and arrested in this con- 
figuration, which is similar to the arrest 
phenotype observed with some of the con- 
ventional ts alleles of CDC28 (14). This 
Cdc28-mediated ts lethal phenotype re- 
quired the presence of the N-end rule path- 
way, inasmuch as ubrl A cells that expressed 
Ub-Arg-DHFRm-ha-Cdc28 grew at both 
23°C and 37°C (Fig. 2B), and remained 
morphologically normal at 37°C. 

Pulse-chase experiments confirmed that 
Arg-DHFRP-ha-Cdc28 was long-lived at 
23°C but short-lived at 37°C (tin < 10 
min) (Fig. 3). The onset of metabolic 
instability of Arg-DHFRm-ha-Cdc28 after 
the temperature upshift was extremely rapid 
(Fig. 3). As could be expected from the 
results of phenotypic analysis (Fig. 2B), 
Arg-DHFRm-ha-Cdc28 was long-lived at 
both temperatures in ubrlA cells that 

lacked the N-end ~ l e  pathway (Fig. 3). 
We conclude that Arg-DHFRm can be 

used as a portable, heat-inducible Ndegron 
to ~roduce ts mutants of a new class. called 
td (temperature-inducible degron) . Features 
of the td technique that should make it 
useful in a variety of settings include the 
following. 

1) The td method does not require an 
extensive, often unsuccessful search for a ts 
mutation in a gene of interest. - 

2) If the protein of interest can tolerate 
an N-terminal extension, the correspond- 
ing td fusion is likely to be functionally 
unperturbed at permissive temperature, as 
appears to be the case with Ura3 and Cdc28 
(Fig. 1). By contrast, low activity at per- 
missive temperature is a common problem 
ivith conventionally derived ts proteins (4) 
and is also expected to be a complication 
with proteins expressed from genes whose 
nonsense mutations are suppressed by a 
conditional suppressor tRNA (2). 

3) A frequent problem with conditional 
phenotypes is the "phenotypic lag" that 
may occur between the imposition of non- 
permissive conditions and the emergence of 
a relevant null phenotype. The td method 
eliminates or reduces this problem, because 
the heat-induced activation of the condi- 
tional N-degron results in rapid disappear- 
ance of a td protein (Fig. 3). In an earlier 

domain 1 domain 2 domalnl 
H.If-lit0 In p h e m l y p  with PI#noY1#r rrllh 

u b w m  owl?rn IT(=( .-- 1-asamain3 l ~ a a s ~ a , n J  

23°C long long Ura+ Ura+ growth growth 

3 7 " ~  short long Ura' Ura+ arrest growth 

Flg. 1. The tdmethod. A fusion protein on the left contains an N-terminal ubiquitin (Ub) moiely (blue), a 
ts dihydrofolate reductase (DHFW) moiety (red), with a destabilizing residue such as Arg (R) at the 
UbDHFR junction, and a test protein moiely (green) at the Gterminus of the fusion. In the present wale, 
the test proteins were Ura3 and Cdc28 of S. cerevisiae. Some of the Lys (K) residues of DHFW are 
indicated as well. Expression of this fusion in a eukaryote such as the yeast S. cemisiae results in rapid 
cleavage at the Ub-DHFR junction and the exposure of a destabilizing Arg (R) residue at the N-terminus 
of a deubiquiti nated fusion (6). At permissive temperature (23%), the Ndegron of the Arg-DHFFP moiety 
is inactive, apparently because none of the Lys residues in the folded DHFFP can sene as an effcient 
ubquitination site (6). H m ,  at nonpermissive temperature (37%), a conformational destabilization of 
Arg-DHFFP results in at least some of its lysines becoming available as ubquitination sites of the 
previously cryptic Ndegron. The prccessive degradation of the fusion by the N a d  rule pathway then 
ensues, greatly reducing its level in the cell. In the examples shown, the yeast Ura3 (orotidine-5'- 
phosphate decarboxylase) as the Gterminal moiety of the fusion resulted in Ura+ cells at 23°C but in 
Ura- cells at 37%. Sirnilarty, when the essential kinase Cdc28 was expressed as an Arg-DHFRbCdc28 
fusion, cells grew at 23°C but not at 3PC. W h  either Arg-DHFW-Ura3 or Arg-DHFW-Cdc28, the 
absence of the N+nd rule pathwa/ (in u b l A  cells) precluded these conditional phenotypes at 37%. 
Thus, Arg-DHFFP can be used as a portable, heat-inducible Ndegron that yields ts mutants of a new 
class, called td (temperature-inducible degron). 
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application of the N-end rule to the prob- 
lem of phenotypic lag, Park et al. (1 6) fused 
a constitutive N-degron to a protein ex- 
pressed from a regulatable promoter. Aside 
from being a non-ts technique, this other- 
wise useful method (16) is constrained by 
the necessity of using a heterologous pro- 
moter and by the constitutively short half- 
life of a target protein, whose levels may 
therefore be suboptimal under permissive 
conditions. (Although the test genes of the 
present work were also expressed from a 
heterologous promoter, this limitation is 
not intrinsic to the td technique.) 

4) One advantage of the td method is 

the possibility of using two sets of experi- 
mental conditions: a td protein-expressing 
strain at permissive versus nonpermissive 
temperature or, alternatively, the same 
strain versus a congenic strain lacking the 
N-end rule pathway, with both strains at 
nonpermissive temperature. This powerful 
internal control, provided in the td tech- 
nique by two alternative sets of permissive 
and nonpermissive conditions, is unavail- 
able with conventional ts mutants. 

At present, the td method is confined to 
proteins of the cytosol and the nucleus- 
compartments where the N-end rule path- 
way is known to operate (6). However, the 

Fig. 2. The td mutants. (A) Ura3 A UBR1 ubrlA UBRl ubrlA UBRl ubrlA UBRl ubrlA 
as a test protein. Saccharornyces 
cerevisiae YPH500 (MTa ura3 
his3 UBR1) (18) and the con- 
genic strain JD15 (ubrlA ura3) 
were transformed with pPW17R, 
expressing Ub-Arg-DHFR-ha- 
Ura3 (denoted as Ura3), or with 
pPW43R, expressing Ub-Arg-DH- 
FRtS-ha-Ura3 (denoted as Ura3td) 
(10). Individual colonies of plas- 
midcarrying cells were dis- 
persed in water, and 5 pI of each 
suspension, containing approxi- 
mately equal amounts of cells, 
was spotted either on SD(-Ura, 
-His) plates, which allowed the 
growth of Ura+ but not of Ura- 
cells, or on SD(FOA, Ura, -His) 
plates, which allowed the growth 

Media: -Ura +'OA 
23% 

B UBRl ubrlA 

Ura -KO? 
37°C 

UBRl ubrlA 

of Ura- but not of Ura+ cells (10). 23 c 37 c 
The plates were incubated at ei- 
ther 23°C or 3PC, as indicated, and photographed 3 to 5 days later, depending on the growth 
temperature and media composition. (B) Cdc28 as a test protein. YPH500 (18) was transformed 
with the linearized plasmid pPW66R, yielding the strain PWY1, which expressed Ub-Arg-DHFRts- 
ha-Cdc28 (denoted as Cdc2atd) instead of the wild-type Cdc28 (15). PWYl was crossed to JD55 
[MATa ura3 ubrlA::HIS3]. The resulting diploid was sporulated, and haploid UBRl and ubrlA 
segregants (1 1, 12) that expressed either wild-type Cdc28 or Cdc2atd were isolated; in these 
segregants, HIS3 and URA3 marked, respectively, ubrlA and the Cd~28~~-encoding allele of 
CDC28. These strains (their relevant genotypes are indicated around the plates) were streaked in 
sectors on YPD plates containing 0.1 mM CuSO,, and incubated at 23°C or 37C, as indicated. The 
plates were photographed after 4 or 3 days of growth at 23°C or 37°C respectively. 

Flg. 3. Pulse-chase analysis of 23°C 37°C 
Cdc2atd. Exponential cultures of ei- I UBR~ ubr7A " UBR~ ubrlA ' 
ther UBRI or u b r l ~  S. cerevisiae chase (min): ' o 10 30 " ' o 10 30 ' ' o 10 30 ' 
that Cdc28, expressed denoted as Arg-DHFRts-ha- Cdc2atd (see 21;u 1 rl Kl 
the legend to Fig. 28 and (15)], 
were labeled with 35S-methionine 
for 5 min at 23OC, followed by a 
chase at 23°C or 37°C for 0,10, and 
30 min, extraction, immunoprecipi- 69- a 
tation with anti-ha, and SDS-ply- 
actylamide gel electrophoresis cdc28td-I 9 1 4 i;--i-I P q  
analysis (11, 12, 19). Durations of == == 
chase, temperatures, and the rele- *%a 
vant genotypes are indicated 
above the lanes. The band repre- C IZAuu 
senting Cdc28Id and molecular size markers (in the leftmost lane) are also indicated (the latter in 
kilodaltons). The asterisk denotes an unrelated S. cerevisiae protein that cross-reacted with anti-ha; 
this protein (19) was present in control immunoprecipitates from cells lacking Arg-DHFRts-ha- 
Cdc28. 

td concept should also be applicable to 
degrons in other compartments. Cytosolic 
degradation signals distinct from N-degrons 
and residing in either DHFR or other car- 
riers should be feasible as well and may 
prove superior for certain applications. We 
recently found that the heat induction of 
the Arg-DHFRf" N-degron is inhibited in 
the Dresence of methotrexate. a DHFR- 
speckc, tightly binding substkte analog 
(1 7). The resulting possibility of control- 
ling a degron with agents other than tem- 
perature can be used to construct new 
classes of conditional mutants. 
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onto M9 plates contain~ng amp, Trp, and Leu, and 
lacking uracil. The yeast URA3 gene complements 
the Ura- phenotype of E. coli pyrF mutants [M. 
Rose, P. Grisafi, D. Botstein, Gene29, 113 (1984)l 
This E, coliscreen eliminated mutant plasmids that 
did not express a functional Ura3 moiety of Ub- 
Arg-DHFR-ha-Ura3 at 37°C However, those (po- 
tentially relevant) plasmids that expressed a mu- 
tant DHFR moiety were expected to pass this test. 
[E. coli lacks the ubiquitin system (6). The N-ter- 
minal ubiquitin moiety of Ub-Arg-DHFR-ha-Ura3 
was therefore retained In E. coli, precluding the 
formation of an N-degron.] 
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SD(-Ura, -His) plates at 37°C. Plasmids from cells 
that passed these screens were introduced into the 
YPH500-derived strain JD15 [ubrl-A I:, LEU2 ura3, 
produced identically to ubrlA strains in (1 1, IZ)], 
with transformants selected on SD(-Ura) plates at 
37°C. This step narrowed the selection to plasmids 
whose ability to confer the ts Ura+ phenotype re- 
quired the presence of the N-end rule pathway (6, 
11, 12). In both of the plasmids thus obtained, the is 
lesion was found to be a single missense mutation in 
the region encoding DHFR (see text). The mutation 
was identified by first determining, in restriction 
fragment-swapping tests, that the relevant alteration 
resided within the DHFR moiety of UbArg-DHFR- 
ha-Ura3, and then by sequencing the DHFR-coding 
regions in the initial (pPW17R) and mutant plasmids 
using the chain termination method (20). The final 
construct, termed pPW43R, was produced from the 
unmutagenized pPW17R by replacement of its Eco 
RI fragment encoding Ub-Arg-DHFR-ha-Ura3 with 
the otherwise identical fragment from one of the 
above plasmids encoding Ub-Arg-DHFRtS-ha-Ura3. 
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Open "Back Door" in a Molecular Dynamics 
Simulation of Acetylcholinesterase 

M. K. Gilson,* T. P. Straatsma, J. A. McCammon, D. R. Ripoll, 
C. H. Faerman, P. H. Axelsen, I. Silman, J. L. Sussman 

The enzyme acetylcholinesterase generates a strong electrostatic field that can attract the 
cationic substrate acetylcholine to the active site. However, the long and narrow active site 
gorge seems inconsistent with the enzyme's high catalytic rate. A molecular dynamics 
simulation of acetylcholinesterase in water reveals the transient opening of a short channel, 
large enough to pass a water molecule, through a thin wall of the active site near tryp- 
tophan-84. This simulation suggests that substrate, products, or solvent could move 
through this "back door," in addition to the entrance revealed by the crystallographic 
structure. Electrostatic calculations show a strong field at the back door, oriented to attract 
the substrate and the reaction product choline and to repel the other reaction product, 
acetate. Analysis of the open back door conformation suggests a mutation that could seal 
the back door and thus test the hypothesis that thermal motion of this enzyme may open 
multiple routes of access to its active site. 

T h e  enzyme acetylcholinesterase (AChE) 
terminates signaling at cholinergic synapses 
by rapid hydrolysis of the neurotransmitter 
acetylcholine (ACh) . The crystal structure 
of AChE (I)  raises questions regarding sub- 
strate entry and product release. First, the 
active site gorge is very deep and appears 
too narrow to admit ACh (I ,  2).  However, 
the demonstration that quaternary amines 
enter the active site of crystallized AChE 
(3) proves that the protein is sufficiently 
flexible to admit substrate by some route. 
Second, the inward electrostatic field at the 
gorge, which is likely to accelerate penetra- 
tion of the positively charged substrate (4, 
5), would seem to impede the exit of the 
product choline from the mouth of the 
active site. A thin wall near the base of the 

active site, at residues MetB3 and Trp84, 
could offer an alternative route for the 
escape of products (4). This back door 
might also provide a vent for water mole- 
cules during the passage of substrate, prod- 
ucts, or both through the narrow gorge. We 
have studied these issues by performing a 
molecular dynamics (MD) simulation of 
AChE and analyzing the resulting time 
series of protein conformations with regard 
to active site accessibility. 

Unobserved atoms were added to the 
Torpedo californica AChE dimer (I) ,  as de- 
scribed in (3, using the program Quanta 
(Molecular Simulations, Waltham, Massa- 
chusetts). Protonation states at neutral DH 
were assigned on the basis of atomic solvent 
accessibilities, of salt-bridging and hydro- 
gen-bonding opportunities, and of the pu- . .- 
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