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Premature p34cdc2 Activation Required 
for Apoptosis 

Lianfa Shi, Walter K. Nishioka, John Th'ng, E. Morton Bradbury, 
David W. Litchfield, Arnold H. Greenberg* 

Activation of the serine-threonine kinase ~ 3 4 " ~ " ~  at an inappropriate time during the cell 
cycle leads to cell death that resembles apoptosis. Premature activation of ~ 3 4 " ~ " ~  was 
shown to be required for apoptosis induced by a lymphocyte granule protease. The kinase 
was rapidly activated and tyrosine dephosphorylated at the initiation of apoptosis. DNA 
fragmentation and nuclear collapse could be prevented by blocking ~ 3 4 " ~ " ~  activity with 
excess peptide substrate, or by inactivating ~ 3 4 " ~ " ~  in a temperature-sensitive mutant. 
Premature ~ 3 4 " ~ ~ ~  activation may be a general mechanism by which cells induced to 
undergo apoptosis initiate the disruption of the nucleus. 

O n  contact with target cells. cvtotoxic T c. , I  

lymphocytes (CTLs) release granule serine 
proteases that trigger apoptosis (1-3). The 
transmembrane pore-forming protein 
forin probably facilitates protease entry into 
the target cell (2, 3). Unlike developmen- 
tally regulated programmed cell death, ap- 
optosis induced by cytotoxic granule prote- 
ases does not require new protein synthesis 
(2, 3), suggesting that the protease initiates 
nuclear disintegration through a posttrans- 
lational mechanism. The ~ 3 4 ' ~ "  kinase is a 
highly regulated serine-threonine kinase 
(4) that, when complexed with cyclins A 
and B, controls cell entry into mitosis; this 
complex initiates the dissolution of the 
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nuclear membrane and uromotes chromatin 
condensation, events that are also hall- 
marks of apoptosis (5, 6). The resemblance 
of apoptosis to the "mitotic catastrophe" 
seen in eukaryotic cells overexpressing 
p34'd'2 at an inappropriate time during the 
cell cycle (7, 8) prompted us to examine 
the role of this kinase in apoptosis. 

We examined the induction of p34"dc2 
kinase in YAC-1 lymphoma cells by frag- 
mentin-2 in the presence or absence of 
perforin. Fragmentin-2 is a granule serine 
protease produced by natural killer (NK) 
cells that has homology to human cytotoxic 
T lymphocyte (CTL) granzyme B (2). After 
a 45-min treatment with these agents, 
p34"d'2 was immunoprecipitated from the 
cell lysates with a polyclonal COOH-termi- 
nal specific antibody (9) and the kinase 
activity was measured with two p34cdc2 
peptide substrates [peptide A, derived from 
casein kinase I1 (CKII) (9), and peptide B, 
derived from nucleolin (1 O ) ]  (1 1). In the 
presence of constant amounts of perforin, 
fragmentin-2 stimulated kinase activity in a 
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Fig. 1. (A) Activation of A , 
p34- kinase in YAC-1 
cells induced to undergo 
apoptosis by the fragmen- - 
tin-2 protease. Cells were g 16 

treated with fragmentin-2 2 12 

and perforin for 45 min and 1 8  
then the lysates were im- 4 

munoprecipitated with an o 
antibody to p34c,,c2 and PeWsubstnte A B C A B c A B c A B c A B c 

F r a p m - 2  (@mi) 0 1.4 0.17 0.7 1.4 
assayed for kinase activity Pmrn(whnc) 0.36 o 03 0 . 3  0 . 3  

(1 1) with three substrates: 
peptide A (Gln-Leu-Gln-Leu-Gln-Ala-Ala-Ser-Asn-Phe-L-r*-Pro-Val- activity assayed with peptide A as in Fig. 1A. (C) Comparison of pacdc2 
Lys-Thr-lle-Arg; gray bars); peptide B (Ala-Val-Thr*-Pro-Ala-Lys-Lys-Ala- kinase activity after fragmentin-2 and nocodazole treatment. YAC-1 cells 
Ala-Thr*-Pro-Ala-Lys-Lys-Ala; black bars), which are known p34- sub- were treated with fragmentin-2 (1.4 pg mi-') and perforin (0.36 pg mi-') 
strates (9, 10); and peptide C (a control peptide in which the prolines in for 45 min, or nocodazole (0.05 pg ml-l) for 8 hours and then immuno- 
peptide B at positions 4 and 11 had been replaced with glycines; open precipitated with antibody to p34- in the presence (+) or absence (-) 
bars). (B) Time-dependent activation of p34- kinase by fragmentin-2 of the COOH-terminal peptide (50 pg ml-l) used to raise the p34-- 
and perforin. Cells were treated for the indicated length of time and kinase specific antibody. Kinase activity was measured with peptide A. 

dose-dependent manner. A control sub- 
strate with glycines at positions 4 and 11 of 
peptide B (peptide C), which changes the 
~ 3 4 ~ ' ~  recognition sequence, was not 
phosphorylated either by purified activated 
p34dc2 (12) or by p34cdcZ immunoprecipi- 
tated from cells undergoing apoptosis in- 
duced by hgmentin-2 (Fig. 1A). The in- 
duction of kinase activity by fragmentin-2 
and perforin was extremely rapid. It was 
detected by 15 min and reached maximal 
levels after 60 min (Fig. lB), coinciding 
with the rate of appearance of DNA frag- 
mentation and apoptosis induced by fragmen- 
tin-2 (2). Kinase activity at 60 min was 
equivalent to that in cells arrested in GdM by 
nocodazole for 8 hours (Fig. 1C). If peptide 
correspondmg to the COOH-terminal epi- 
tope used to raise the antbody to p34*2 was 
included in the immunoprecipitates, no ki- 
nase activity was recovered (Fig. 1C). The 
proteolytic activity of the fragmentin-2 was 
required for p34dc2 activation, as the relevant 
protease inhibitor Boc-Ala-Ala-AspCH,Cl, 
but not the control inhibitor PPhe-Pro-Arg- 
CH2Cl, blocked activation (1 3). 

The ~ 3 4 ~ ' ~  kinase activity is regulated 
by its association with cyclins and by 
phosphorylation on Ser, Thr, and Tyr 
residues (1 4). When phosphorylated on 
Tyr15, ~ 3 4 ' ~ '  is inactive until dephos- 
phorylation results in its activation at the 
G,/M transition (14). To ascertain the 
Tyr phosphorylation state of p34'dc2 in 
YAC-1 cells treated with fragmentin-2 
and perforin, we immunoprecipitated the 
kinase and examined it by immunoblot- 
ting with an antibody to phosphotyrosine. 
The ~ 3 4 ~ ' ~  kinase was dephosphorylated 
in cells treated with fragmentin-2 and 
perforin for 45 min to the same extent as it 
was in cells arrested at G2/M for 8 hours 
by nocodazole (Fig. 2). The reduction in 
~ 3 4 ~ '  phosphorylation was not due to pro- 
teolytic degradation of the kinase, as parallel 
extracts contained similar amounts of kinase 
protein (Fig. 2). 

Fig. 2. Tyrosine dephosphorylation of p34- 
during kinase activation by fragmentin-2 prote- 
ase. (A) lmmunoblots developed with an anti- 
body to phosphotyrosine (4G10) (25) or (B) a 
rabbi antibody to p34- (14). YAC-1 cells 
were incubated under the following conditions: 
Lane 1, fragmentin-2 (1.4 pg ml-l) and perforin 
(0.36 pg mi-'); lane 2, fragmentin-2 only; lane 3, 
perforin only; lane 4, YAC-1 untreated control; 
lane 5, YAC-1 control with excess COOH-termi- 
nal p34- peptide added to lysates before 
immunoprecipitation; lane 6, nocodazole (0.05 
pg mi-'). Samples in lanes 1 to 6 were incubat- 
ed at 3PC for 45 min; the sample in lane 6 was 
incubated for 8 hours. Molecular size markers 
are indicated on the left (in kilodaltons). 

To determine whether the induction of 
p34cdc2 kinase activity was required for 
DNA damage, we preincubated fragmen- 
tin-2 and perforin with excess peptide A 
to compete for ~ 3 4 ' ~ ' ~  kinase phosphoryl- 
ation of critical substrates. DNA fragmen- 
tation was inhibited at 50% of maximum 
[median inhibitory dose (ID5& = 50 FM] 
(Fig. 3). Several other CKII-derived pep- 
tides that are less efficient ~34 '~"  sub- 
strates than peptide A were not inhibito- 
ry. None of the peptides had any.effect on 
perforin-mediated membrane damage 
(Fig. 3) or fragmentin-2 protease activity 
(15), indicating that the inhibition of 
apoptosis was not due to inactivation of 
either of these proteins. 

In order to establish more conclusivelv 
that fragmentin-2-induced apoptosis re- 

Fig. 3. Inhibition of apoptosis by excess 
p34- peptide substrate. Peptide A (circles), 
which corresponds to the p34- phospholyl- 
ation site on CKll (9), or another CKII-derived 
peptide that is a less efficient p34- substrate 
(I) (squares) (Ile-Ser-Ser-Val-Pro-Tyr-Pro-Ser- 
Pro-Leu-Gly-Pro-Leu-Ala-Gly), was added to 
YAC-1 cells in the presence of fragmentin-2 
and perforin. Apoptosis was measured by 125- 
iododeoxyuridine (1251UdR) release (filled sym- 
bols) after 45 min. The effect of the peptides on 
perforin activity was also measured by mem- 
brane damage in a 51Cr-release assay (2) 
(open symbols) after 45 min. 

quired p34cdc2, we used the murine mam- 
mary carcinoma cell line FT210, which 
contains a temperature-sensitive mutation 
in p34c"2 (1 6). At restrictive temperatures, 
kinase activity was reduced by 75% as a 
result of p34'&2 degradation (16, 17), and 
the cells became resistant to fragmentin-2- 
induced apoptosis. Little DNA solubiliza- 
tion or oligonucleosomal DNA ladder for- 
mation could be detected (Fig. 4), and 
chromatin condensation was substantially 
reduced when assayed by Hoechst dye stain- 
ing (18). By contrast, parental FM3A 
mammary carcinoma cells remained sensi- 
tive under all conditions (Fig. 4). Similar 
results were obtained with fragmentin-3 (2, 
19). We excluded the possibility that G2/M 
arrest rather than loss of ~34 ' "~  resulted in 
resistance to hgmentin-2 and -3 by show- 
ing that nocodazole-arrested cells remained 
completely susceptible to apoptosis by these 
proteases (1 2). 
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Flg. 4. Inhibition of apoptosis in FT210 cells bearing a temper 
sensitive mutation in ~ 3 4 " ~ " ~  kinase. (A) Apoptosis of temper 
sensitive FT210 and control FM3A cells was measured after ., ,,, 
bation at the restrictive temperature of 39°C or permissive te 
ature of 32°C for 6 hours, then exposed to (left) fragmentin- 
perforin for 16 hours at 37°C or (right) staurosporine for 16 hc 
37°C. Apoptotic cells were identified by condensed chromati1 
staurosporine treatment by Hoechst dye staining. (6) Southern blot 
of DNA extracted from cells incubated as in (A). The blot was 
hybridized with 32P-labeled (nick-translated) mouse genomic DNA. 
Samples in lanes 1 to 4 were treated with fragmentin-2 and perforin, 
whereas those in lanes 5 and 6 were treated with buffer alone. 
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The idea that p3qdC2 may be an effec- 
tor of other forms of apoptosis was exam- 
ined in FT210 cells by treatment with 
the protein kinase inhibitor staurosporine, 
which activates an apoptosis pathway reg- 
ulated by bcl-2 (20). As measured by 
chromatin condensation, there were sub- 
stantially fewer apoptotic FT210 cells at 
the restrictive temperature; FM3A cells, 
in contrast, were unaffected by the tem- 
perature shift (Fig. 4). 

Among the characteristic morphologi- 
cal changes observed in apoptosis induced 
by CTLs and NK cells are chromatin 
condensation (2 1 ) , and nuclear envelope 
breakdown which is associated with lamin 
phosphorylation and solubilization (22). 
During a normal cell cycle, but restricted 
to the G2/M transition, p34'dc2 kinase 
activation initiates nuclear membrane dis- 

through premature p34CdC2 activation may 
be a general mechanism for the induction of " 
apoptosis. We have demonstrated that ap- 
optosis induced by fragmentin-2 or by stau- 
rosporine requires ~ 3 4 ~ ' ~ .  We have also 
shown that when NIH 3T3 cells are in Go, 
a stage at which p34cdc2 is not expressed, 
they are resistant to CTL-induced apoptosis 
(23). After c-myc or p53 transfection into 
fibroblasts or tumor cells (24), the loss of 
cell cycle control may lead to the inappro- 
priate activation of p34c&2 with the conse- 
quent lethal effects on the nucleus. The 
idea that p34cdc2 activation could be a 
convergence point of different apoptotic 
signals is an appealing explanation for the 
observation that most forms of apoptosis 
terminate with nuclear dissolution. 
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