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Magnetic Field Effects on B,, Ethanolamine 
Ammonia Lyase: Evidence for a Radical Mechanism 

Timothy T. Harkins and Charles B. Grissom* 
A change in radical pair recombination rates is one of the few mechanisms by which a 
magnetic field can interact with a biological system. The kinetic parameter V,,/Y, (where 
& is the Michaelis constant) for the coenzyme B,,-dependent enzyme ethanolamine 
ammonia lyase was decreased 25 percent by a static magnetic field near 0.1 tesla (1000 
gauss) with unlabeled ethanolamine and decreased 60 percent near 0.15 tesla with 
perdeuterated ethanolamine. This effect is likely caused by a magnetic field-induced 
change in intersystem crossing rates between the singlet and triplet spin states in the 
{cob(lI)alamin:5'-deoxyadenosyl radical) spin-correlated radical pair. 

M o r e  than 20 enzymes are thought to 
incoroorate radical chemistrv in the con- 
version of substrates to products (1, 2). 
Those enzymes that utilize spin-correlated 
radical pair idtermediates should be sensi- 
tive to an applied magnetic field according 
to the same principles that govern radical 
pair chemical reactions. This proposal is 
not new. but it has not been substantiated 
by experiment until now (3). The only 
other example of a biological system that 
is sensitive to an applied magnetic field 
through electron spin selectivity is the 
triplet yield and emission intensity of the 
bacterial photosynthetic reaction center 
(4). Through a mechanism other than 
spin-correlated chemistry, integral mem- 
brane enzvmes mav couvle to the electric 

1 .  

field vector of an alternating electromag- 
netic field. This Drocess does not reauire 
radical chemistry, and it is limited to 
membrane-bound proteins that undergo 
large conformational changes during catal- 
ysis (5). 

The rate or ~ roduc t  distribution of 
chemical reactions that involve geminate 
radical  air or biradical intermediates can 

be altered by a magnetic field that in- 
creases or decreases intersvstem crossing - 
(ISC) rates between the singlet and triplet 
spin-correlated states (6). A geminate rad- 
ical pair born in the singlet spin state after 
bond homolysis will readily recombine to 
reform starting material. If ISC to the 
triplet spin state occurs, recombination to 
the starting material is prohibited by the 
Pauli exclusion principle. This results in a 
longer radical pair lifetime and an in- 
creased forward flux to product (Fig. I). 
To allow for electron spin rephasing 
(ISC), a geminate radical pair must be 
held spatially close for lo- ' '  to l op6  s. 
Beyond this time, interactions with sol- 
vent and neighboring atoms will lead to 
spin randomization. Thus, only chemical 
reactions that occur in this time domain 
may exhibit a magnetic field dependence 
through the radical pair spin exclusion 
mechanism. 

The enzyme-substrate (ES) complex 
formally constitutes a biradical or radical 
pair if radical character exists on both the 
substrate and the enzyme or cofactor at 
some time during the course of the reac- 
tion. If ISC occurs in the singlet ES 
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the ES complex is decreased. The result 
will be an increase in the forward commit- 
ment to catalysis for the substrate (7). 
This will increase the kinetic parameter 
V,,,/K, if it occurs before the first irre- 
versible steo. If a kineticallv slow event 
that occurs after formation of the radical 
pair ES intermediate requires the singlet 
spin state, then increased ISC will popu- 
late the three unreactive triplet spin states 
and V,,, will be decreased. Conversely, if 
the triplet spin state is required for product 
formation, increased ISC will populate the 
triplet spin state and lead to an increase in 
V,,,. These arguments are reversed if the 
radical pair in the ES complex is born in 
the t r i~ le t  state. but this is unlikelv in a 
nonphbtochemical system. If the slow step 
is independent of the spin state of ES, 
V,,, will not change, but V,,,/K, can 
still be altered by a change in nonproduc- 
tive radical pair recombination. 

An enzyme that requires coenzyme B12 
(5'-deoxyadenosylcobalamin) and catalyzes 
a 1,2 rearrangement was chosen for study 
because of the ubiquitously proposed mech- 
anism that begins with homolysis of the 
C-Co bond to yield 5'-deoxyadenosyl rad- 
ical (.CH,Ado) and cob(I1)alamin (Cbl") 
as the initial radical pair (Fig. 2) (8). 
Electron spin resonance (ESR) studies of 
ethanolamine ammonia lyase (EAL) with 
the slow substrate L-2-amino-1-propanol 
show evidence for two radicals (9, 10). 

Product1 . ' Product3 
(Can be the same product) 

Fig. 1. Effect of a magnetic field on radical pair 
recombination rates in a chemical react'ion. 
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There is a cob(I1)alamin signal and another 
signal (probably an organic radical) that 
share a weak exchange interaction and are 
separated by -6 A (9, lo). Estimates of the 
C-Co bond dissociation energy are as low 
as 31 kcallmol (1 1, 12). 

We chose EAL (E.C. 4.3.1.7) for study 
because it is one of the best characterized 
Bl,-requiring enzymes (1 0, 13). It catalyzes 
a 1,2 shift of the amine group either to 
produce a hydrolytically unstable carbinol- 
amine or acetaldehyde and ammonia (Fig. 
3). EAL from Salmonella typhimurium was 
uroduced in Escherichia coli containine the " 

overexpressed gene, isolated, and assayed 
spectrophotometrically as described (14, 
15). The magnetic field dependence of the 
kinetic parameters was determined with a 
spectrophotometer having an electromag- 
net in the cell compartment (1 6). 

The dependence of the kinetic parame- 
ters V,,, and V,,,IK, for ethanolamine on 
magnetic flux density is shown in Fig. 4, A 
and B, respectively (1 7). The kinetic param- 
eter V,,, was invariant up to 0.25 T. This is 
not surprising because V,,, is limited by 
product release (1 8). The kinetic parameter 
Vn,,,IK, decreased by up to 25% and 
reached a minimum value at 0.1 T. This is 
consistent with the (.CH2Ado:CblH} radical 
pair being produced in the singlet spin state 
after C-Co homolysis, and a magnetic field- 
induced decrease in ISC that would other- 
wise populate the T,, spin states. This in- 
crease in the singlet radical pair population 
enhanced recombination and led to an over- 
all decrease in Vn,,/K,. As the field increased 
beyond 0.1 T, V,,/K,, began to increase and 
reached the initial value seen at 0 T. 

The paradeter V,,, with perdeuterated 
ethanolamine is invariant with magnetic 
field. The magnetic field-dependent de- 
crease in Vn,,,/Kn, with perdeuterated etha- 
nolamine (Fig. 4C) is even greater than the 
decrease in V,,,/K, observed with unla- 
beled ethanolamine. A minimum was 
reached at 0.15 T with ~erdeuterated eth- 
anolamine rather than at 0.1 T as with 
unlabeled ethanolamine. The deuterium 
isotope effect is a combination of primary 
and secondam kinetic isoto~e effects be- 
cause the ethanolamine is perde"terated. 
At 0 T,  DVma, = 6.8 f 0.2 and DV,,,/Km 
= 5.4 2 0.4 (mean 2 SE) as determined 
from our data. 

The difference in the magnitude and 
position of the maximum magnetic field- 
induced change in V,,,/K, with unla- 
beled and deuterated ethanolamine is sur- 
prising if only the recombination of the 
initial (.CH,Ado:Cbl"} radical pair is be- 
ing affected. The radical pairs in all of the 
steps that follow C-Co homolysis will, in 
theory, possess the same spin correlation 
as in the initial (.CH,Ado:Cbl"} radical 
pair (Fig. 3). Interactions with atoms in 

the active site will tend to randomize the 
spin state of the correlated radical pair 
beyond s and render a magnetic field 
effect on subsequent steps unlikely. 

There are several possible explanations 
for the difference in magnetic field depen- 
dence for unlabeled and deuterated etha- 
nolamine. First, in processing the deuter- 
ated ethanolamine, the 5'-deoxyadenosyl 
radical abstracts D. from C-2 of ethanol- 
amine. Subsequent turnover of the cofac- 

tor would now involve the dissociation 
and recombination of a heterogeneous 
population of 5'-CH,, 5'-CHD, and 5 '-  
CD, on the 5'-deoxyadenosine cofactor. 

The nuclear spin and nuclear magnetic 
moment for protium and deuterium are 
different: for 'H, I = 112 and pN = 1.79 
(in units of the nuclear magneton, 5.05 x 
lopz7 JT-I), and for 'H, I = I- and k, = 

0.86. This difference should be inconse- 
quential in C-Co bond homolysis, but 

Enzyme or hv 
h - 

Fig. 2. Homolysis of the C-Co bond by an enzyme or a photon with energy hv in adenosylcob(lll)- 
alamin. The C-Co bond is one of the weakest organometallic bonds known. Esti,mates of the bond 
dissociation energy are as low as 31 kcallmol (1 1). 

MF Sens. 

Fig. 3. Proposed reactlor- mechanism for EAL. Enzyme-induced homolys~s of the C-Co bond 
produces the 5'-deoxyadenosyl radical and cob(ll)alam~n in the singlet spin state. The 5'- 
deoxyadenosyl radical abstracts H. from C-2 of ethanolamine to generate the initial substrate 
radical. The amine group migrates to form the carbinolamine radical that abstracts H .  from 
5'-CH,-adenosine to produce the hydrolytically unstable carbinolamine product and regenerate the 
5'-deoxyadenosyl radical. Under V,, conditions, the enzyme always has ethanolamine bound and 
the fCH,Ado:Cbl"} radical pair does not have to recombine between turnover (k,, includes product 
dissociation and substrate binding before (.CH,A~O:C~I~~) recombination occurs. Under V,,,IK, 
conditions, recombination of the fCH,Ado:Cbl") radical pair (4) is more likely. This would begin the 
catalytic cycle with the transient fCH,Ado:Cbl") radical pair in the singlet spin state. M F  Sens., 
magnetic field sensitivity. 
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perhaps significant to maintaining the cor- 
related s ~ i n  state of the radical   air before 
recombination occurs. Protium, with its 
greater nuclear magnetic moment, will 
promote ISC and spin relaxation of the 
5'-deoxyadenosyl radical to a greater ex- 
tent than will deuterium with its smaller 
nuclear magnetic moment. This is an ex- 
pression of the magnetic isotope effect, 
and it is in addition to the expression of 
any mass isotope effect on the reaction 
(19). 

Another possible explanation for the 
observed difference in magnetic field depen- 
dence with unlabeled and deuterated etha- 
nolamine is that deuteration increases the 
barrier to H(D)- abstraction from substrate. 
This increases the fraction of enzyme in the 
(.CH,Ado:CblI1) radical pair state and al- 
lows for greater recombination. 

We have demonstrated a magnetic 
field-dependent decrease in the net quan- 
tum yield, +, and a corresponding increase 
in the geminate pair recombination rate of 
the (.CHzAdo:Cbln) radical pair produced 
by photolysis of adenosylcob(II1)alamin in 

the absence of enzyme (20). When 532-nm 
light (53.8 kcal/mol) is used to homolyze 
the C-Co bond, the radical pair recombines 
with a rate constant (k,,,) of 1 x lo9 s-l. In 
a B = 0.05 T (500 G) magnetic field, k,,, 
increases to 4 X lo9 s-' (20). At magnetic 
field flux densities greater than 0.12 T, k,,, 
begins to decrease to yield an overall bipha- 
sic shape to the magnetic field depen- 
dence (2 1 ) . A demonstrated magnetic field 
dependence to (.CH,Ado:Cbl") recom- 
bination in photolytically produced radical 
pairs provides precedence for modulating 
(.CH,Ado:Cbl") recombination in B1,-de- 
pendent enzymatic reactions. 

In summary, coenzyme BIZ-dependent 
EAL exhibits a magnetic field dependence 
similar to the magnetic field-dependent 
recombination of the (.CH2Ado:Cbln) rad- 
ical pair produced by photolysis. This sup- 
ports the proposed radical mechanism for 
EAL and other coenzyme BIZ-dependent 
enzymes. This is an example of a magnetic 
field effect on an enzymatic reaction with 
known radical intermediates. 
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