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The Cosmological Kibble Mechanism in the
Laboratory: String Formation in Liquid Crystals

Mark J. Bowick,* L. Chandar, E. A. Schiff, Ajit M. Srivastava

The production of strings (disclination lines and loops) has been observed by means of the
Kibble mechanism of domain (bubble) formation in the isotropic-nematic phase transition
of the uniaxial nematic liquid crystal 4-cyano-4’-n-pentylbiphenyl. The number of strings
formed per bubble is about 0.6. This value is in reasonable agreement with a numerical
simulation of the experiment in which the Kibble mechanism is used for the order parameter

space of a uniaxial nematic liquid crystal.

Symmetry-breaking phase transitions in na-
ture often spawn topological defects. An ex-
ample of such defects from condensed matter
physics is vortices produced when helium is
cooled through its superfluid phase transition.
An important proposal from cosmology is that
the observed structure of the universe con-
tains relics of topological defects formed as the
early universe cooled. The important question
of the density of defects was first treated
theoretically by Kibble (1) using a model in
which the phase transition proceeds by the
formation of uncorrelated domains that sub-
sequently coalesce, leaving behind defects. A
domain is a uniform region of the ordered, or
low-temperature, phase. Kibble assumed that
the order varied' randomly from one domain
to the next and smoothly in between, and so
proposed a straightforward statistical proce-
dure for calculating the probability of string
formation.

Although the Kibble mechanism was
proposed for cosmic domains and strings, it
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Physics, Syracuse University, Syracuse, NY 13244—
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should also describe the formation of strings
or line defects in laboratory systems. Some
time ago, Zurek (2) suggested the examina-
tion of vortex formation in liquid helium.
The first experimental success, however,
came in research by Chuang and co-workers
(3, 4). Working with nematic liquid crys-
tals, these researchers were able to observe
the evolution of line defects. In the present
work, we report an experimental verifica-
tion of a crucial aspect of the Kibble mech-
anism: String formation can be predicted
statistically from domain coalescence. Ex-
periments have also been reported recently
on vortex line creation in liquid “He (5).
Nematic liquid crystals (NLCs) consist of
rod-like molecules; the rods are randomly
oriented in the isotropic, high-temperature
phase but show long-range alignment in the
nematic, orientationally ordered phase (6).
To quantitatively distinguish the ordered
and disordered phases, an order parameter is
typically introduced. For NLCs, this param-
eter may be taken to be the mean orienta-
tion of rods. This value is zero in the
isotropic phase and nonzero in the nematic
phase. Orientational order in the nematic
phase is described by a unit three vector n
without sign, because there is no preferred
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polarity to the constituent rods (n = n).
Thus, the space of possible nematic ground
states is the two-sphere S?, with opposite
points of the sphere regarded as the same
(7). This space is rich in topological defects
(6-11). It has point-like defects (mono-
poles), line defects (disclinations or strings),
and three-dimensional defects (texture).
Before describing the present work with
NLCs, we illustrate the Kibble mechanism
using string formation for the simpler case
of two spatial dimensions (planar spins)
(8). The order parameter in some small
spatial region is a unit vector with orienta-
tion @ varying between 0 and 2w (the
ground-state manifold is a circle S'). If we
follow 0 along a closed path, we can deter-
mine the total angle A by which 6 winds;
of course AG must be some integer multiple
of 2. When A9 is nonzero, a defect must
be present inside the path (see Fig. 1A).
Consider now the situation when three
randomly oriented domains meet at a point
(Fig. 1B). We can then calculate the wind-
ing angle A® using a closed path that
circulates in some specified direction
around the intersection point; the dashed
line in the figure illdstrates such a path. If
AO = +2r, one type of elementary string is
formed when the three domains coalesce.
The probability of string occurrence is

A B
0 0,
2n F1me2 3 2n
f
n T -
» 0

0 LA 2n 2
ol

(o] D

Fig. 1. A series of four diagrams illustrating the
Kibble mechanism for planar spins. (A) The
concentric circles indicate field lines of the order
parameter and require an elementary topologi-
cal defect at the origin. (B) Three domains with
uniform order parameters 0, 8,, and 85, The
dashed circle indicates a loop around which a
winding angle A@ is calculated. (C) A graph
illustrating the calculation of the winding angle
for a path through three domains such as in (B).
By definition, 8; = 0. The jumps in 8 between
domains are minimized: This is the geodesic
rule. Two different sets of order parameters are
shown; the upper curve leads to defect forma-
tion (A® = +2m), and the_lower curve does not
(A8 = 0). (D) The triangles labeled (+) and (-)
indicate the combinations of 8, and 8, leading to
A9 = +27 defects. One-fourth of all combina-
tions lead to defect formation.
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easily calculated. We denote the order param-
eters in the three domains as 8, = 0, 6,, and
0,. We wish to calculate the winding angle
A9; the sequence of domains follows the
circulation of our path. We also assume that
the variation in 0 from one domain to the
next is minimized. For example, in Fig. 1C
the upper curve has 8; > . We then show 6
rising up to + 21 at the wall between domains
3and 1. A return to 0 = 0 is excluded because
this would require a larger jump. In fact, fora
string in which A8 = 421, we must have 6,
> . We must also require 6; — 7 < 0, < .
If this second inequality is violated, we get A®
= 0 instead, as shown in the lower curve.
Allowing windings by *+21r, one can readily
estimate the probability P of forming a defect
from the geometrical construction of Fig. 1D,
obtaining P = 1/4 (12).

The generalization to three dimensions of
the point defect just described for planar
spins is a line defect. Spin systems, however,
do not possess such line defects. Here the
ground-state manifold is a sphere S2; unlike
the circle S!, closed paths on a sphere are
topologically equivalent to points and do not
indicate line defects. Nematic liquid crys-
tals, on the other hand, do exhibit line
defects, because the orientation is described
by a vector with the added property that
orientations n and —n are equivalent [this
ground-state manifold is denoted as the coset
S?/Z,, where Z? is the cyclic group of order 2
(1, = 1)]) (8-11). A string defect in this case
corresponds to the situation in which the
director n rotates by r along a closed path;
this is called a strength 1/2 defect. In two
dimensions the Kibble prediction for the
probability of defect formation for the man-
ifold $?/Z, can again be obtained analytical-
ly, yielding 1/a (13)..

We now turn to our experiments and
simulations. We studied the NLC K15 (4-

Fig. 2. A series of five images
showing the I-N phase transi-
tion in a drop of K15 on an
untreated microscope slide.
Note the stages of bubble nu-
cleation and growth, bubble
coalescence and string for-
mation, and string coarsen-
ing. The delay times for each
image (referred to in the first
frame showing discernible
bubbles) are (A) 2 s, (B) 3 s,

cyano-4'-n-pentylbiphenyl; BDH Chemi-
cals, Ontario). We used an Olympus model
BH phase-contrast microscope, equipped
with a monochrome television camera and
a standard video cassette recorder. We
placed a drop of K15 on a clean, untreated
microscope slide and heated the drop with
an illuminator. After a slow reduction of
intensity, we were able to obtain clear
images of bubble formation and evolution
as the drop cooled through the isotropic-
nematic (I-N) phase transition at 35.3°C.

One set of such images is reproduced in
Fig. 2. Figure 2A shows the numerous small
isolated bubbles of the nematic phase that
form first. At short intervals later, the
nematic bubbles increase in size (Fig. 2, B
and C), both by natural growth and by
coalescence. In the next stage, the organi-
zation of the NLC into bubbles is replaced
by an image of a homogeneous medium
with entangled strings (Fig. 2D), which
further evolve by straightening, shrinking,
and the excision of small loops of closed
string (Fig. 2E). The associated string dy-
namics have been well described (3, 4). As
time passes, the string pattern “coarsens.”

An important aspect of these observa-
tions is that the nematic bubbles shown in
Figs. 2, A to C, formed in a single sheet
near the top of the liquid crystal droplet.
The depth of field of our microscope was
about 40 pm. We see no out of focus
bubbles, nor do we see the shadowing of
bubbles by other bubbles. We presume that
the liquid crystal cooled most rapidly near
the air interface, leading to the formation
of a nematic sheet at this interface.

It is fairly straightforward in the exami-
nation of Fig. 2C to select a minimal,
spherical bubble that may contribute to the
observed string formation. Larger, oddly
shaped bubbles arise from the coalescence

400 pm

(C) 5, (D) 11 s, and (E) 23 s. The scale is for all five pictures.
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of two or more minimal bubbles. We there-
fore estimate the total number of bubbles N
for the image by counting the total number
of minimal bubbles involved, with coa-
lesced bubbles counted as the appropriate
multiple. In Fig. 2C we find N ~ 55. This
procedure is somewhat ambiguous, and we
found about a 10% standard deviation in
independent estimates of the bubble count
in a given picture. This value is compatible
with the standard deviation in the bubble
count for different sequences.

We now proceed to estimate the expect-
ed number of strings per bubble n_ from the
measured string length L, in Fig. 2D and the
bubble count N. The total string length is
L, = n)Nd, where d is the linear size of a
minimal bubble. This size may be estimated
as d = VA/N, where A is the area of the
image in Fig. 2C. Thus, we find n, =
L/VAN. For Fig. 2C we measure L, = 2.7
mm, yielding n, ~ 0.61. We repeated this
analysis on three sequences, obtaining n, =
0.64 £ 0.02 for the average number of
strings per bubble. The error here is the
simple statistical error in the mean. Our
true errors are dominated by the ambiguities
in bubble count mentioned above and by
the coarsening of strings between Figs. 2C
and 2D, which reduces the string length.

We now estimate the probability of
string formation in our experiment using an
elaboration of the Kibble calculation de-
scribed earlier. For this estimation, we need
a model for the directors in a “raft” of
nematic bubbles just before coalescence
(Fig. 2C). We assume that the director
orientation inside a given bubble is roughly
uniform and that this overall orientation
varies randomly from one bubble to anoth-
er. The top portions of the bubbles are in
contact with air. We also assume that the

Fig. 3. Lattice representing the domain struc-
ture expected as the nematic bubbles coa-
lesce. The top faces represent the nematic-air
interface where the director is normal to the
surface. The bottom faces correspond to the
N-l interface where the director makes an angle
of 63.5° from the vertical (although it can vary
azimuthally). Middle lattice sites represent the
regions near the centers of the bubbles.



director in each bubble near the air inter-
face is vertical (9). Similarly, the bottom
portion of each bubble is in contact with
the isotropic phase, where measurements
indicate that the director is anchored at an
angle 8,; = 63.5° = 0.6° from the vertical
(14-16).

This configuration of directors is illustrat-
ed in Fig. 3. The two-headed arrows on each
vertical dotted line represent the directors
for the top, the bulk, and the bottom of a
given bubble. After coalescence, the appli-
cation of the geodesic rule for this configura-
tion of directors is consistent with the emer-
gence of a horizontal string, as indicated by
the bold solid line. This model for string
formation accounts for the observed absence
of strings terminating at the interfaces.
Strings certainly do not pass through the
top, because the director orientation is con-
stant everywhere. Although the director at
the bottom sites can have some variation, no
string can pass through the bottom faces.
This limitation is because the entire bottom
face (including the links) is supposed to
represent the N-I interface where the direc-
tor has fixed anchoring. For the bottom face,
the geodesic rule is applied with this addi-
tional restriction on the director orienta-
tion. A little thought then reveals that a
strength 1/2 line defect cannot pass through
the bottom face of the lattice. Because in our
experiment we only see the two-dimensional
projected length of the string, we estimated
the horizontally projected average length of
the strings per bubble of unit size. We
generated 50,000 random configurations of
directors, consistent with the boundary con-
ditions, and computed the corresponding
value of n, to be 1.564 + 0.006 (17).

This model is in fair agreement with our
observations—it accounts for the formation
of strings that do not terminate at the upper
and lower interfaces and for the magnitude
of the string length. There are two primary
deficiencies. First, the model predicts two
layers of strings, upper and lower. We have
no clear evidence for more than a single
layer; we do not clearly observe one string
passing beneath another without contact.
Second, the predicted string length-is about
twice as great as that observed. This quan-
titative discrepancy may be partially ex-
plained by string interactions in the seconds
that pass between our last clear image of
bubbles and our first clear image of strings
(see Fig. 2, C and D), but a model that more
clearly accounts for a single layer would also
reduce the discrepancy.

We can account well for the observed
string length if we assume that our measure-
ments are sensitive primarily to strings at the
air-nematic interface. It is plausible that the
coalescence of two nematic bubbles forms
horizontal strings that are in effect squeezed
toward the interfaces; we anticipate that the

free energy of strings at the air-nematic inter-
face is significantly lower than that for bulk
strings, so that the formation of a mat of
strings at this interface is favored. The disad-
vantage of this approach is that we did not
clearly observe structures that would corre-
spond to a string descending from the surface
toward the N-I interface. We speculate that
intercommutation (3) may have disconnected
the strings leading down from the surface mat
during the several seconds that passed be-
tween our last clear image of bubbles (Fig.
2C) and our first clear image of strings (Fig.
2D). In any event, we reanalyzed the simula-
tion described earlier to estimate the horizon-
tal length of just the strings in the top half of
Fig. 3. This reconsideration yields n, = 0.636
+ 0.004—in excellent agreement with our
measured value (18).
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Laser-Based Analysis of Carbon Isotope Ratios

D. E. Murnick* and B. J. Peert

A laser technique for analysis of carbon-13:carbon-12 ratios with the specificity of laser
resonance spectroscopy and the sensitivity and accuracy typical of isotope ratio mass
spectrometers is reported. The technique is based on laser optogalvanic effect spectros-
copy, in which an electrical (galvanic) signal is detected in response to the optical stim-
ulation of a resonance transition in a gas discharge species. Carbon dioxide molecular gas
lasers are used, with the probed transitions being identical to the lasing transitions.
Measurements for carbon dioxide samples with 100-second averaging times yield isotopic
ratios with a precision of better than 10 parts per million.

Carbon isotopic analysis is an important tool
in geology (1), environmental science (2),
biology (3), and medicine (4). In geological
studies, such as the sedimentation of carbon-
ates, or in atmospheric studies, such as polar
ice core and oceanic isotope measurements, it
is the 3CO,:1*CO, ratio that is of primary
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importance in the determination of the cycle
of CO, production and absorption throughout
history. In biological and medical studies,
analysis of isotopic carbon ratios makes possi-
ble the study of metabolic pathways in living
systems. Presently, either the radioactive trac-
er 4C or stable 13C is used for such analysis.
The use of *C as a tracer for diagnostic
purposes is a rapidly growing field (5). The use
of stable '>C rather than the radioactive
isotope #C obviates potential harmful radia-
tion effects and eliminates time constraints
and the problem of radioactive waste disposal.
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