
Shape of Asteroid 4769 Castalia (1 989 PB) 
from Inversion of Radar Images 

R. Scott Hudson* and Steven J. Ostro 
The inversion of previously reported, delay-Doppler images of Castalia yields a 167- 
parameter, three-dimensional shape model that is bifurcated into two distinct, irregular, 
kilometer-sized lobes. The crevice that separates the lobes has an average depth of 
between 100 and 150 meters and is oriented roughly perpendicular to the asteroid's longest 
dimension. The constrained least-squares reconstruction method introduced here can be 
used to determine the shape, spin vector, and radar-scattering properties of any asteroid 
or comet for which delay-Doppler images provide sufficient signal-to-noise ratio, orienta- 
tional coverage, and spatial resolution. 

Radar observations can resolve Earth- 
crossing asteroids (ECAs) by measuring the 
distribution of echo power in time delay 
(range) and Doppler frequency: Planes nor- 
mal to the line of sight cut the target into 
range cells, and for a rigid target, planes 
parallel to both the line of sight and the 
target's apparent spin vector (1 )  cut the 
target into Doppler-frequency cells (2). 
Hence, a delay-Doppler image can be visu- 
alized as the projection of the target's radar 
brightness onto a Dlane that contains the - 
radar and is normal to the constant-delay, 
constant-Doppler lines. Each of those lines 
can intersect two or more noncontiguous 
points on the target; therefore, parts of the 
image can represent a many-to-one map- 
ping, that is, can be "northisouth ambigu- 
ous." Moreover, the length equivalent of 
frequency in radar images is a function of 
the target's apparent spin vector, which 
may be poorly known. The accurate inter- 
pretation of ECA radar images is conse- 
quently nontrivial and usually requires mul- 
tiple images that sample diverse orienta- 
tions of the target. 

Radar observations (3) of 4769 Castalia 
(formerly 1989 PB) yielded useful resolu- 
tion and definition of this ECA's shape: A 
2.5-hour seauence of 64 images resolved - 
the echo into a few dozen cells and revealed 
a bimodal distribution of echo Dower. Vi- 
sual inspection and analysis of the echoes' 
frame-to-frame bandwidth variation indi- 
cated that Castalia is bifurcated into two 
kilometer-sized lobes apparently in contact 
with each other (3). In this report, we 
describe an estimation of Castalia's three- 
dimensional shape from the delay-Doppler 
images. 

Each of the 64 images in our data set 
(3) is the result of a 29-s integration and 
consists of an estimate of radar cross sec- 
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tion a as a function of time delav T and 
Doppler frequency v. The length 'equiva- 
lent of the 2-p,s interval between time 
samples is 300 m. The length equivalent 
of the frequency-sampling interval, where 
Au = 0.95 Hz, is 

Ax = A v P A ~ ~ T  cos 6 (1) 

where P is the apparent rotation period, A 
is the wavelength (0.126 m), and 6 is the 
subradar latitude (measured from the as- 
teroid's equatorial plane to the radar line 
of sight). For the estimated period, 4.07 * 
0.02 hours (3), the 64-frame sequence 
covers 220" of rotation phase +; each 
image spans A+ = 0.7". Because the as- 
teroid's position on the sky changed by less 
than 1" during the entire imaging se- 
quence, the contribution of that angular 
motion to the apparent rotation is negli- 
gible. We therefore assume that 6 was - 
constant throughout the sequence. Our 
shape reconstruction treated both 6 and P 
as free parameters. 

We used two shape models: a "one- 
component" model and a "two-compo- 
nent" model. The one-component model 
has a surface S defined by 

S = {rlr = r(O,+) (2) 
[sin 0 cos +, sin 0 . sin 4 ,  cos 01) 

for 0 I 0 5 .rr and 0 5 + < 2 ~ ,  where 

C [ain,cos(m4) + bimsin(m4)lP;'(cos 0)) 
In= l 

( 3 )  
is a spherical harmonic series having (L + 

"shape parameters" al,, bl, (4). The 
surface of a two-component model is the 
union of the surfaces of two one-component 
models: S = S, U S,, where S, = {rlr = r - 
r,,) and ri = r,(0, +)[sin Oacos 4 ,  sin 0-sin 
4 ,  cos 01 for i = 1, 2. The radius functions 
r, (0, +) and r,(O, +) have their own 

spherical harmonic series, and ro, and ro, 
are the corresponding centers of the indi- 
vidual components. 

We modeled the delay-Doppler data set 
as 

Here I(r) is unity if the point r is illumi- 
nated by the radar and zero otherwise, and 
h, and hw are the time and frequency 
impulse-response functions, respectively. 
The angular scattering law oo(r) ,  defined 
so a,(r)dS is the radar cross section of a 
surface element dS at r,  is assumed to have 
the form 

where i(r) is the angle of incidence, n 
measures the specularity of the surface, and 
p describes the radar brightness of the sur- 
face at normal incidence (i = 0). In addi- 
tion we used 64 factors to permit the recal- 
ibration of each frame's brightness scale, 
which had relied on an empirical function 
describing the sensitivity of the Arecibo 
telescope; 64 delay-registration parameters 
to compensate for small, random, frame-to- 
frame shifts in the sampling time base; and 
a frequency offset to correct the a priori 
Doppler ephemeris. 

The accuracy of any shape model derived 
from the Castalia data is limited by the fact 
that onlv one subradar latitude is samuled. If 
our view were too close to equatorial (6 - 
V), the reconstruction would be northisouth 
ambiguous. However, if 161 were at least a 
few tens of degrees (as appears to be the case 
here), then the rotational phase coverage 
would provide sufficient geometric leverage 
to overcome northlsouth ambiguities (5), 
but the polar region opposite the radar- 
facing pole would have been unseen and 
hence poorly constrained. More generally, 
the data might support relatively high-reso- 
lution (large L) reconstruction of some re- 
gions of the surface (where the backscatter- 
ing is strong or which contribute to many 
frames) but not others. We used the highest 
resolution (largest L) model that we felt was 
both computationally practical and adequate 
to ensure reliable reconstruction of well- 
imaged regions and then used penalty func- 
tions, described below, to suppress surface 
features that do not seem to be required by 
the observations. We settled on L = 12, or 
169 shape parameters, for the one-compo- 
nent model and L = 8, or 2(8 + + 5 = 
167 shape parameters, for the two-compo- 
nent model (6). The total number of free 
parameters in the one- and two-component 
models were 300 and 298, respectively. 

The reconstruction process minimized 
an objective function @(p) with the use of 
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Powell's method (7) to estimate the free 
parameters p. We took 

@(p) = ,y2(p) + 10p~A (p) + 1OB6(p) 
+ lO~C(p)  + 1OPDD(p) (6) 

where 

describes the eoodness of fit between ob- 
served and mkeled data. The variance 
s2,,,,,, of pixel TU+ includes contributions 
from receiver noise and echo self noise. 

The "penalty functions" A(p), B(p), 
C(p), and D(p) are defined as follows: A(p) 
is the square of the distance between the 
model's centroid and its spin axis, and B(p) 
is the square of the sine of the angle y 
between the spin axis and the model's prin- 
ciple axis of greatest moment of inertia. 
Making PA and PB large forces A(p) and 
B(p) to be small, producing a dynamically 
plausible model under the assumptions of 
uniform density and principle-axis rotation 
(8). The C (p) function is a concavity pen- 
alty given by C(P) = SSUlk,,,(r)lk~(r)dS, 
where U is the unit step function and km(r) 
is the maximum surface curvature (9) at 
point r. Because km(r) > 0 at a concavity, 
the integral is zero for a convex model, 
exceeds zero if any concavities exist, and 
increases as concavities become more prom- 
inent. The D(p) function, a proximity pen- 
alty applicable only to two-component mod- 
els, is the reciprocal of the distance between 
the components' centroids. Increasing PC 
suppresses concavities, and increasing PD 
forces the two components apart. 

We obtained approximate values for the 
nonshape parameters from a biaxial ellip- 
soid fit to the data, used them to initialize 
the one-com~onent model. and then 
sought a 1east:squares solution for the full 
parameter vector. The penalty factors PA 
and PB were set large enough to keep y from 
exceeding a few degrees and to keep the 
centroid within a few tens of meters of the 
spin axis, and the concavity penalty factor 
$c was set low enough to avoid any notice- 
able effect on the fits. This process yielded 
frame-to-frame calibration corrections on 
the order of 10% and delay registration 
corrections on the order of 0.5 ps, in each 
case consistent with a priori expectations 
about the performance of the Arecibo radar 
system (10). As an example of the model's 
sensitivity to a nonshape parameter, Fig. 
1A shows values of postfit ,y2 versus values 
of the subradar latitude 161 at 5" intervals. 

The one-component estimations yielded 
distinctly nonellipsoidal shapes with a vari- 
ety of concavities, notably a crevice, or 
waist, that encircles the middle of the body 
and is roughly perpendicular to the body's 
longest dimension. The value of ,y2 and the 

model's shape depend on the concavity 
penalty factor PC (Figs. 1B and 2A), that 
is, on how strongly concavities are penal- 
ized. The penalizing of concavities by in- 
creasing PC to 5 almost eliminates the waist 
but causes a severe increase in ,y2. We 
conclude that the waist is required to fit the 
data; Castalia is distinctly bifurcated into 
two lobes. We take the PC = 4, one- 
component model to represent a lower 
bound on the asteroid's bifurcation. 

To place an upper bound on the severity 
of the bifurcation, we used a two-component 
model and studied the dependence of shape 
and ,y2 on the proximity penalty factor PD. 
The two-component parameter set and the 
penalty factors (PA, PB, PC) were initialized 
with values from the PC = 4, one-compo- 

nent model. However, here the concavity 
penalty function C (p) was defined as the sum 
of integrals for each component, so it re- 
ceived no contribution from the waist. 
whose evolution was then independent of 
PC (I I). The ,y2 values and the shape 
depend on PD (Figs. 1C and 2B), that is, on 
how strongly the component centroids are 
forced apart. At PD = 6 the components are 
barely in contact, but ,y2 has increased dra- 
maticallv. Substantial contact between the 
components is required to explain the data, 
and we take the PD = 5.4, two-component 
model to represent an upper bound on the 
severity of Castalia's bifurcation. 

We adopt the PD = 4, two-component 
model (Fig. 3) as a nominal working model 
of the asteroid. The root-reduced chi-square 

:= Fig. 1. (A) Percentage increase of 3 over its minimum value 
as a function of sub-radar latitude 161 for estimations from the 
one-component model. The least-squares estimate, 35". de- 
fines the locus of possible pole directions as a cone with axis 

5 parallel to the radar line of sight (right ascension = 0.30 hour, 
declination = 25.4") and interior half angle 55" (16). Shape 

'20 25 30 1 40 46 50 models for 161 of 30' and 40' look similar to that for # of 35O, 
Id (-1 whereas the models for 25" and 45" are noticeably smaller 

and larger, respectively. The inverse correlation between i !r--J size and 161 stems from Eq. 1, and the increase in x2 away 
from 35" reflects the pressure that the echoes' delay disper- 
sion exerts on the estimation of the model's size. Based on 

- our understanding of these results and numerous simula- 
N x tions, we assign an intentionally conservative standard error 

2.0 3.0 4.0 5.0 of 2100 to our estimate of 161. (6) Percentage increase of x2 
PC over its minimum value as a function of the concavity penalty 

factor pc for estimations with the one-component model. (C) 'i'n Percentage increase of 3 over its minimum value as a 
function of the proximity penalty factor &for estimations with 
the two-component model. 

5 

0 
4.0 5.0 6.0 

so 

Fig. 2. (A) Plane-of-sky views of 
onecomponent models corre- 
sponding to pc = 3.0,4.0,4.5. and 
5.0. Views are at 6 = 35" and rota- 
tion phases of JI - 53" (top row) 
and $ - 157 (bottom raw), cone- 
sponding to fr&s 16 and 45, r e  
spect'wely, in figure 3 of (3). Models 
are rendered with a Lambertian (n 
= 2)' scattering law. Values for 3 
are essentially insensitive to p, 5 3, 
have increased by 2% at pc = 4, 
and rise steeply thereafter. Much 
bumpiness is smoothed out as we 
raise pc from 3 to 4, but the waist 
remains intact. We take the pc = 4 
model to represent a lower bound 
on Castalia's bifurcation. (6) Plane- 
of-sky views of twocomponent 
models corresponding to p, = 5.0. 
5.4, 5.8, and 6.0. Orientations and 
scattering law are the same as in 
(A). Values for x2 are essentially 
insensitive to p, I 5, have increased by 2% at 5.4. and rise steeply thereafter. We take the p, = 
5.4 model to represent an upper bound on Castalla s bifurcation. 
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goodness-of-fit statistic, RRC = [x2/(Nd - 
NP))ln, with Nd = 5824, the number of 
observed data, and Np = 298, the number of 
free parameters, calculated over 2 by 2 km 
frames, is 1.5. This value of RRC might be 
interpreted to mean that the modeling is 
incomplete (for example, L may be too 
small) or inaccurate (for example, the as- 
sumed scattering law may be simplistic). 
However, the formal probabilistic interpre- 
tation of this statistic in linear least-squares 
estimation is not applicable here, pnmanly 
because of the extreme nonlinearity of the 
mathematical model and also because of the 
difficulty of quantifying the effective increase 
in the number of degrees of freedom that is 

caused by use of the penalty functions (1 2). 
Nonetheless, we were concerned that our 

assumption of a uniform scattering law (Eq. 
5) may have been overly restrictive. To test 
for the presence of variations in reflectivity p 
and specularity n, we explored one-compo- 
nent models that allowed both parameters to 
be functions of surface location, by expand- 
ing each in its own L = 8 spherical harmonic 
series. The estimation, which involved 160 
new parameters, did not reduce RRC and 
hence fails to offer compelling evidence for 
heterogeneity in the radar properties of 
Castalia's surface. Large-scale (> 100-m) 
variations in near-surface bulk density or 
roughness therefore seem unlikely (1 3). 

Fig. 3. Plane-of-sky views of the nominal model of Castalia at subradar latitude 6 = 35" and rotation 
phases IJI = 00 to 2200 in steps of 200. Lobe alpha (see Fig. 4) is between the viewer and lobe beta 
at IJI = 60". The Lambertian scattering law used for this rendering and in Fig. 2 is somewhat less 
specular than the radar scattering law estimated in our reconstruction and much more specular than 
optical scattering laws thought to characterize asteroids. 

Fig. 4. Perspectives showing projections of the 
nominal Castalia model (thick solid curve), the 
lower bound model (dashed curve), and the 
upper bound model (thin solid curve). (A) Pole- 
on view of model silhouettes. The spin axis is 
denoted by the dot in lobe alpha. Arrows radiat- 
ing from that dot point toward the radar at 
rotational phases J, = 0", W, 150", and 220"; the 
radar data u(T,v;$) cover phases from 00 to 220". 
(B) "Broadside" view from within the equatorial 
plane at J, = 150". (C) "End-on" views from 
within the equatorial plane at IJI = 60". (D) Cross 
sections corresponding to the dotted-line slice 
through the pole-on view. The dotted vertical 
lines in (B), (C), and (D) represent the spin axis. 
Each quadrant is a 2 by 2 km square, and the 
tick marks are at 0.2-km intervals. The curve 
defined by the intersection of the two lobes in the 
nominal model is nonplanar. The root-mean- 
square deviation of that curve from its best-fit plane is 0.16 km. That plane lies 0.17 km from the 
nominal model's center of mass along a line that points toward ($3) = (241°,87. 

Our reconstruction shows Castalia to be a 
strongly bifurcated body whose convex hull 
has maximum dimensions of 0.7 by 1.0 by 
1.6 km (Fies. 3 and 4). The asteroid's . " 
prominent waist has a typical depth between 
100 and 150 m with respect to the object's 
convex hull. The depth and sharpness of the 
waist support the hypothesis (3) that at one 
time the lobes were separate and that the 
current "contact-binary" configuration re- 
sulted from a relativelv gentle collision. 

Our Castalia modei is distinctly noncon- 
vex and nonellipsoidal. Its volume (0.68 km3) 
is 10% less than that of its convex hull, and its 
root-mean-square radial deviation from that 
hull (averaged over all 8,+ and normalized to 
the model's mean radius of 0.50 km) is AT,,,,,, 
= 10%. The model's deviation from its best 
triaxd-ellipsoidal approximation, Are,, = 
14%, exceeds the corresponding value of 11% 
for the main belt asteroid 951 G a s p  (14). 
That asteroid deviates more from an ekpsoid 
than Phobos, Deimos, any other planetary 
satellite observed by spacecraft, or any aster- 
oid for which stellar occultation limb profiles 
are available (1.5). Therefore Castalia, the 
smallest planetary object imaged so far, is also 
the most irregularly shaped. The individual 
lobes, labeled alpha and beta in Fig. 4, have 
mean radii of 0.46 and 0.40 km and Ar,ll of 
11% and 12%, respectively. 

The onlv fundamental limitations on 
the resolution of a shape reconstruction 
from radar images are the delay-Doppler 
resolution, orientational coverage, and sig- 
nal-to-noise ratio of those images. The 
Arecibo and Goldstone radars can now 
achieve resolution an order of magnitude 
finer than that of the Castalia data. By 
1995, completion of instrumentation up- 
mades now underwav should allow the use- - 
ful imaging and reconstruction of several of 
the currently known ECAs per year. 

REFERENCESANDNOTES 

1. The apparent spin vectw cr, at any time t is the sum 
of the intrinsic (sidereal) spin vector o,and thean- 
tribution o, = (Wdf) x e arising from the changi  
direction of the target-bradar unit vector e. 

2. S. Hudson. Remote Sensing Rev. 8, 195 (1 993). 
3. S. J. Ostro et a/., Science 248. 1523 (1990). 
4. T. Duxbury [Icarus 78, 11 9 (1 989)] outlined merits 

and drawbacks of the use of spherical harmonics 
to rodel irregularly shaped solar system objects. 
He fit a onecomponent model with L = 6 (that is. 
49 shape parameters) to spacecraft images of 
Phobos. 

5. If 6 # 0, every point on the surface executes a 
unique delay-Doppler trajectory as the target ro- 
tates. 

6. Five parameters are needed to describe the loca- 
tions of the components' centers relative to each 
other and to the spin vector. 

7. W. H. Press. B. P. Flannery. S. A. Teukolsky. W. T. 
Vetterling. Numerical Recipes in C (Cambridge 
Univ. Press, Cambridge, 1988). 

8. Because parts of the asteroid are not well con- 
strained by the obse~ations, we cannot test hy- 
potheses that involve the object's internal density 
distribution or rotational stability. Our assumptions 
of uniform density and principal-axis rotation en- 

942 SCIENCE VOL. 263 18 FEBRUARY 1994 



sure the plausible extrapolation of the recon- 
structed surface into unconstrained regions. 

9. D. J. Struik, Lectures on Classical Differential 
Geometry (Dover, New York, ed. 2, 1988). 

10. Estimates of nonshape parameters include an inde- 
pendent value for the rotation period (P = 4.07 _t 

0.03 hours) and refined values for the time delay T 

and 2380-MHz Doppler frequency v of hypothetical 
echoes from Castalia's center of mass. Thesevalues 
were received at the center of curvature of the 
Arecibo telescope's main reflector, at the epoch 22 
August 1989 06:45:00 UTC: T = 37,453,066.9 -t 0.3 
ps and v = 173,116.5 + 0.1 Hz. 

11. The Castalia data apparently require a waist with 
severe surface curvature. The rippled appear- 
ance of the low-p,, one-component models in Fig. 
2A is an artifact, called Gibbs' phenomenon, of 
trying to use a truncated series to represent a 
sharply curving, nearly discontinuous function. 
The two-component model avoids this drawback. 

12. Removing the "dynamical" penalty functions A(p) 
and B(p) and allowing the nominal model to 
reconverge decreased x%y less than 0.1%. 

13. For the nominal model, estimates of the scattering- 
law exponent and reflectivity (see Eq. 5) are n = 2.8 
+ 0.3 and p = 0.30 2 0.03, where the uncertainties 

encompass values for the upper and lower bound 
models. The most commonly used measure of a 
radar target's reflectivity is the radar albedo 6 = 
u/A , which is the target's radar cross section divid- 
ed Gy its projected area. Castalia's model albedo, 
averaged over all 64 frames, is 0.12 2 0.01. A 
sphere with Castalia's values for p and n would have 
a radar albedo 6 = 2p/(n + 1) = 0.16 _t 0.01; this 
"equivalent spherical albedo" may permit more use- 
ful comparisons with other radar targets. 

14. M. J. S. Belton et a/., Science 257, 1647 (1 992). 
15. P. C. Thomas, lcarus 77, 248 (1989). 
16. For a single-6 observation, if 6 is replaced by -6 

and the model is replaced by its mirror image 
through the equatorial plane, then u,(T,v;$) is 
unchanged. The spin vector's sign (that is, the 
sense of rotation) and its azimuthal coordinate 
could have been constrained if other radar-target 
directions had been sampled. 

17. This research was conducted at Washington 
State University and the Jet Propulsion Laborato- 
ry, California lnstitute of Technology, under con- 
tract with the National Aeronautics and Space 
Administration. 

30 September 1993; accepted 6 January 1994 

The Cosmological Kibble Mechanism in the 
Laboratory: String Formation in Liquid Crystals 

Mark J. Bowick,* L. Chandar, E. A. Schiff, Ajit M. Srivastava 
The production of strings (disclination lines and loops) has been observed by means of the 
Kibble mechanism of domain (bubble) formation in the isotropic-nematic phase transition 
of the uniaxial nematic liquid crystal 4-cyano-4'-n-pentylbiphenyl. The number of strings 
formed per bubble is about 0.6. This value is in reasonable agreement with a numerical 
simulation of the experiment in which the Kibble mechanism is used for the order parameter 
space of a uniaxial nematic liquid crystal. 

Symmetry-breaking phase transitions in na- 
ture often spawn topological defects. An ex- 
ample of such defects from condensed matter 
physics is vortices produced when helium is 
cooled through its superfluid phase transition. 
An important proposal from cosmology is that 
the observed structure of the universe con- 
tains relics of topological defects formed as the 
early universe cooled. The important question 
of the density of defects was first treated 
theoretically by Kibble (1) using a model in 
which the phase transition proceeds by the 
formation of unconelated domains that sub- 
sequently coalesce, leaving behind aefects. A 
domain is a uniform region of the ordered, or 
low-temperature, phase. Kibble assumed that 
the order varied randomly from one domain 
to the next and smoothly in between, and so 
proposed a straightforward statistical proce- 
dure for calculating the probability of string 
formation. 

Although the Kibble mechanism was 
proposed for cosmic domains and strings, it 
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should also describe the formation of strings 
or line defects in laboratory systems. Some 
time ago, Zurek (2) suggested the examina- 
tion of vortex formation in liquid helium. 
The first ex~erimental success. however. 
came in reseakh by Chuang and'co-workers 
(3, 4). Working with nematic liquid crys- 
tals, these researchers were able to observe 
the evolution of line defects. In the present 
work, we report an experimental verifica- 
tion of a crucial aspect of the Kibble mech- 
anism: String formation can be predicted 
statistically from domain coalescence. Ex- 
periments have also been reported recently 
on vortex line creation in liquid 4He (5). 

Nematic liquid crystals (NLCs) consist of 
rod-like molecules; the rods are randomly 
oriented in the isotropic, high-temperature 
phase but show long-range alignment in the 
nematic, orientationally ordered phase (6). 
To quantitatively distinguish the ordered 
and disordered phases, an order parameter is 
typically introduced. For NLCs, this param- 
eter may be taken to be the mean orienta- 
tion of rods. This value is zero in the 
isotropic phase and nonzero in the nematic 
phase. Orientational order in the nematic 
phase is described by a unit three vector n 
without sign, because there is no preferred 

polarity to the constituent rods (n = n).  
Thus, the space of possible nematic ground 
states is the two-sphere S2, with opposite 
points of the sphere regarded as the same 
(7). This space is rich in topological defects 
(6-1 1). It has point-like defects (mono- 
poles), line defects (disclinations or strings), 
and three-dimensional defects (texture). 

Before describing the pesent work with 
N,LCs, we illustrate the Kibble mechanism 
using string formation for the simpler case 
of two spatial dimensions (planar spins) 
(8). The order parameter in some small 
spatial region is a unit vector with orienta- 
tion 0 varying between 0 and 2.rr (the 
ground-state manifold is a circle S1). If we 
follow 0 along a closed path, we can deter- 
mine the total angle A0 by which 0 winds; 
of course A0 must be some integer multiple 
of 2.rr. When A0 is nonzero, a defect must 
be present inside the path (see Fig. 1A). 

Consider now the situation when three 
randomly oriented domains nieet at a point 
(Fig. 1B). We car1 then calculate the wind- 
ing angle A0 using a closed path that 
circulates in some specified direction 
around the intersection point; the dashed 
line in the figure illdstrates such a path. If 
A0 = + ZT, one type of elementary string is 
formed when the three domains coalesce. 

The probability of string occurrence is 

Fig. 1. A serles of four diagrams illustrating the 
Kibble mechanism for planar spins. (A) The 
concentric circles indicate field lines of the order 
parameter and require an elementary topologi- 
cal defect at the origin. (B) Three domains with 
uniform order parameters 0 , ,  0,, and 0,. The 
dashed circle indicates a loop around which a 
winding angle A0 is calculated. (C) A graph 
illustrating the calculation of the winding angle 
for a path through three domains such as in (B).  
By definition, 0, = 0 .  The jumps in 0 between 
domains are minimized: This is the geodesic 
rule. Two different sets of order parameters are 
shown; the upper curve leads to defect forma- 
tion (A0 = + 2 a ) ,  and the.lower'cun~e does not 
(A0 = 0 ) .  (D) The triangles labeled (+) and (-) 
indicate the combinations of 0, and 0, leading to 
A9 = 2 2 a  defects. One-fourth of all combina- 
tions lead to defect formation. 
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