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Associative Odor Learning in Drosophila Abolished 
by Chemical Ablation of Mushroom Bodies 

J. Steven de Belle* and Martin Heisenberg 
The corpora pedunculata, or mushroom bodies (MBs), in the brain of Drosophila mela- 
nogaster adults consist of -2500 parallel Kenyon cell fibers derived from four MB neu- 
roblasts. Hydroxyurea fed to newly hatched larvae selectively deletes these cells, resulting 
in complete, precise MB ablation. Adult flies developing without MBs behave normally in 
most respects, but are unable to perform in a classical conditioning paradigm that tests 
associative learning of odor cues and electric shock. This deficit cannot be attributed to 
reductions in olfactory sensitivity, shock reactivity, or locomotor behavior. The results 
demonstrate that MBs mediate associative odor learning in flies. 

Common cellular processes underlie both 
associative and nonassociative learning in - 
both invertebrate and vertebrate species 
( I ) .  Beyond the realm of single cells, spe- 
cialized neuronal assemblies have been im- 
plicated in the learning and storage of 
sensorv information. In mammals. the hio- 
pocampus is important for the initial forma- 
tion of declarative memory (2). In insects, 
Mbs are assumed to play a role in the 
processing and storage of chemosensory in- 
formation (3, 4). 

The relative simplicity and unusual 
shape of the MB neuropil (5) suggests that 

Theodor-~overl-lnst~tut fur B~ow~ssenschaften Le- 

it has a specialized function. The primary 
input to the MBs is the antennal-glomeru- 
lar tract (AGT), which extends from the 
antenna1 lobe (AL) to the lateral horn 
(LH) of the lateral protocerebrum (LPR) 
and sends a network of fibers into the MB 
calyx (5, 6). At least in some insect species, 
the calyx also receives fibers from visual and 
other sensory systems (5, 6) and, therefore, 
likely processes multimodal information. 
MB outputs extend from the lobes to many 
areas in the brain including the LPR. Some u 

fibers provide feedback connections be- 
tween the calyx, peduncle, and lobes, 
whereas other fibers connect the MBs to 
each other across the sagittal midplane (5). 

hrstuhl fur Genetik, Universitat Wurzburg, Am Hu- In honeybees, local cooling of the MBs 
bland, D-97074 Wurzburg, Germany. interrupts olfactory memory, (7). Depolar- 
*To whom correspondence should be addressed after ization-of a unp'aired medial neuron 
1 March 1994 Max-Planck-lnstitut fur Biologische 
Kvbernetik, Spemannstrasse 38, D-72076 Tubin~en,  (VUMmxl) innervating the of bees 
~ e r m a n ~ .  can supplant the unconditioned stimulus 
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(US) during the course of olfactory condi- 
tioning (8). Recordings of another neuron, 
PE1, which projects from the MB p exit 
(junction of the a and 8 lobes) to the LPR 
in bees, suggest that MBs participate in 
short-term memory formation (9). In Dro- 
s o w ,  genetic dissection of learning and 
memory (4,lO) has shown that the mutants 
dunce (dnc) and nctabaga (rut) have bio- 
chemical deficits affecting adenosine 3',5'- 
monophosphate (CAMP) metabolism (I I ) . 
Defects in CAMP-dependent protein kinase 
(PKA), protein phosphat-1 (PPl), and 
calcium-calmodulin-dependent protein ki- 
nase I1 (CaM kinase) impair various forms 
of learning (12). These results point to a 

Flg. 1. Brains of control ' 
(left) and HU-treated (right) 
flies. Frontal paraffin sec- 
tions (7 km, posterior to 
anterior) were photo- 
graphed under a fluores- 
cence microscope (29); 
bar, 50 km. Perikarya and 

model of neuronal plasticity in which cel- 
lular signals converge on PKA (1, 13). At 
the network level, MB structural mutants 
have impaired olfactory learning and mem- 
ory (1 4, 15). Furthermore, gene products of 
dnc and rut are preferentially expressed in 
the MBs (1 6). 

Structural changes in neurons and neu- 
ronal assemblies are known to accompany 
memory storage (1 7). The MBs of Drosoph- 
ila show a remarkable degree of plasticity, 
both during the course of development and 
as a response to environmental stimuli in 
adult flies. MBs in dnc and rut mutants do 
not show this experience-related structural 
plasticity (1 8). Volumetric differences be- 

neuropil appear yellow and 
green, respectively. (A and 
B) C, calyx; LH, lateral 
horn; PB, protocerebral 
bridge. (C and D) P, pe- 
duncle; AGT, antennal-glo- 
merular tract; FB, fan- 
shaped body; NO, noduli. 
(E and F) Peduncle; F, fi- 
ber bundle; EB, ellipsoid 
body. (G and H) a, a lobe; a 
$7, lobe; AL, antenna1 
lobe. 

Fk. 2. Brain substruc- A P P 

tuk volumes derived 
from planimetric mea- 
surements of 7-pm serial 
sections (29) of flies 
sampled from those test- 
ed in behavior experi- 
ments (Fig. 3). Bars rep- 
resent mean + SE of 
mean brain hemisphere 
values: n = 20 flies oer 

- 
Calyx " Optlc lobe 

-. - -  

b a r  except in (A). (A) ~al~xvolumes of all groups were significantly different [analysis of variance 
(ANOVA), Ft,,, = 2963.47, P c 0.0001; Student-Newman-Keuls multiple range test (SNK), P 
s 0.05; n = 20, 246, and 33; (30)l. (B) AL volumes were significantly different (t test, t lls.lsl = 
12.48, P c 0.0001). (C) OL (medulla + lobula + lobula plate) volumes were not sign~flcantly 
different (t test, t tl,lsl = 0.91, P = 0.3667). 

SCIENCE VOL. 263 4 FEBRUARY 1994 

LEPORTS ( 

tween MBs of nurse and forager worker 
honeybees are also attributed to differences 
in experience (1 9). 

Taken together, the above evidence im- 
plies that MBs are specialized structures 
mediating learning and memory processes. 
However, both surgical interference and 
genetic dissection have their drawbacks. 
Cooling, for instance, cannot be confined 
to the MBs. Widespread defects (20), and 
general expression patterns associated with 
the biochemical learning and memory 
genes (1 6) as well as the unknown etiology 
and specificity of defects in the MB struc- 
tural mutants (4, 14, 15) prohibit definitive 
conclusions. To gain a more precise under- 
standing of MB function in olfactory learn- 
ing, we used an ablation procedure (21) 
that owes its specificity to the unique pat- 
tern of development of the MBs (22, 23). 
In Drosophdu, MB Kenyon cells are derived 
from four neuroblasts (MBNbs) that divide 
continuously from embryogenesis until the 
end of metamorphosis (21-23). MBNbs 
and one lateral neuroblast (LNb) are the 
only proliferating cells from 0 through 8 to 
12 hours after larval hatching (ALH) (2 1- 
24). We fed hydroxyurea (HU) to newly 
hatched wild-type D. mekmoguster larvae 
(25). This treatment should kill MBNbs 
and delete all MB Kenyon cell lineages (2 1) 
with the exception of the 40 to 300 cells per 
hemisphere that arise during the course of 
embryonic development (23, 26). 

Complete MB ablation at the level of 
the light microscope was observed in 93.5% 
of HU-treated flies (Fig. 1). A total of 17 
very reduced calyces were observed (only in 
males) in 246 sectioned heads. The mean 
calyx volume for treated flies was 0.7% of 
the control value (equivalent to 19 & 6 
Kenyon cells and their connections) (Figs. 
1, A and B, and 2A). Reduced ALs were 
also observed in HU-treated flies (Fig. 1, G 
and H). The mean AL volume was 68% of 
the control value (Fig. 2B), which we 
attribute to ablation of one LNb (22, 23). 
We noted a fiber bundle posterior to the 
MB knee area in all MB-ablated flies (Fig. 
1, E and F) that could represent embryonic 
Kenyon cell fibers (23, 26) or extrinsic MB 
tracts (5, 9). HU treatment and the subse- 
quent absence of the MB neuropil did not 
appear to affect other brain regions, includ- 
ing the central complex (Fig. 1, A through 
F). The optic lobes (OL) are derived from 
neuroblasts that begin proliferating at 8 to 
12 hours ALH (24); these structures also 
showed no significant volume differences 
(Fig. 2C). The size and external anatomy of 
treated and control flies were indistinguish- 
able. 

On initial observation, the general be- 
havior of MB-less flies seemed entirely nor- 
mal. They appeared active, exhibited vig- 
orous courtship, and reproduced abundant- 
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ly. To address the hypothesis that MBs 
mediate associative learning of olfactory 
signals, populations of MB-ablated and 
control flies were trained to avoid odors 
[4-methylcyclohexanol (MCH) and benz- 
aldehyde (BAL)] when paired with electric 
shock (120 V dc) in a discriminative clas- 
sical conditioning paradigm (27) (Fig. 3). 
Control flies performed well (PI = 83 + 2), 
whereas MBless flies were almost com- 
pletely unable to learn odor-shock associa- 
tions (PI = 7 + 2) (Fig. 3A). Residual 
learning in these flies can be attributed to 
embryonic (23, 26) or the few remaining 

Learning 

B 
'"0, 

" 
c MCH dilution 

C E loo, 

BAL dllution 

I L 

Shock (V) 

Fig. 3. Classical conditioning and sensory acu- 
ity (27). Bars represent mean + SE of Pls, n = 
8 per bar except in (A). (A) Learning. All groups 
were significantly different (ANOVA, F12,201 = 
142.28, P < 0.0001; SNK, P 5; 0.05; n = 8, 8, 
and 7). Learning in MB-less flies was signifi- 
cantly different from 0 ( t  test, tIq = 3.53, P - 0.0095). (B and C) Odor avo~dance. Re- 
sponses of naive flies to pure and dilu- 
tions (in mineral oil) of MCH (B) or BAL (C) 
versus air. A three-way ANOVA detected a 
significant effect of dilution only (FI,,ssl = 71 56, 
P < 0.0001). Effects of HU treatment, different 
odorants, and interactions were not significant. 
(D) Shock avoidance. Responses of naive flies 
to 120- and 20-V dc shock. A two-way ANOVA 
testing the effects of HU treatment, voltage, and 
interactions was not significant (F13.,, 13.52, P 
= 0.0782). 

postembryonic Kenyon cells, or both (Fig. 
2A). In one experiment, adult flies were 
found to have partial MB ablation. Calyces 
were observed in 15% of these animals; 
both mean calyx volume (4% of the control 
value, Fig. 2A) and le-g (PI = 20 + 6, 
Fig. 3A) were significantly higher than in 
the total ablation group. Our results con- 
firm previous studies suggesting a correla- 
tion between odor learning and calyx vol- 
ume (1 4, 15). In preliminary experiments, 
HU-treated flies could not learn odor-shock 
associations when MCH versus 3-octanol 
(OCT) or BAL versus propionic acid 
(PRA) were used (IS), indicating that ol- 
factory conditioning defects in these flies 
are not odor specific. 
Low performance of MB-less flies in 

conditioning experiments might have been 
a secondary result of reduced olfactory abil- 
ity because of AL reduction (Figs. 1, G and 
H, and 2B). We tested, responses of Mve 
flies to MCH and BAL (27) (Fig. 3, B and 
C). HU treatment had no significant effect 
on the ability of flies to avoid either pure or 
diluted odorants. These results show that 
MBs are not required for simple odor detec- 
tion and that AL reduction did not result in 
anosrnias to MCH and BAL. 

Reduced shock reactivity also might 
have contributed to the low performance of 
MBless flies in conditioning. HU-treated 
flies responded normally to 120 V, the 
shock intensity used in conditioning (27) 
(Fig. 3D). Avoidance of 20-V shock tended 
to be slightly (although not significantly) 
reduced. 

Preliminary odor avoidance tests with 
alternative odorants revealed specific olfac- 
tory deficits in HU-treated flies (15). For 
example, treated flies were anosmic to iso- 
amyl acetate and displayed reduced aver- 
sion to both OCT and PRA. Acetone 
elicited a normal response comparable to 
those of MCH (Fig. 3B) and BAL (Fig. 
3C). This pattern of selective anosmia and 
reduced AL volume (Figs. 1, G and H, and 
2B) implies the deletion of either a subset of 
AL glomeruli or local interneurons provid- 
ing connections among glomeruli (6). We 
did not attempt to identify individual de- 
leted elements within the AL in this study. 

MBless flies walk and fly normally (28). 
We have evidence that visual learning is 
not disturbed in these flies (28), although 
MB connections to the visual system in 
Drosophila likely exist (26) and the MBs of 
some insects may participate in visual learn- 
ing (3). Here we have demonstrated that 
restricted deletion of the MBs in Drosophila 
abolishes associative odor learning but 
leaves other aspects of olfaction intact. We 
therefore propose that signal convergence 
in the MBs (4) accounts for the associative 
processes contributing to odor learning in 
flies. However, we have not shown that 

MBs are the storage sites of learned odor 
evaluation. Structures downstream from 
the MBs must still be considered. It is 
unknown if the MBs are specific for learn- 
ing. An alternative hypothesis is that MBs 
also might serve to discriminate odor qual- 
ities, leaving the most basic good or bad 
decisions to other elements of the brain. 
Distinguishing between these possibilities 
will further elucidate MB function. 
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TECHNICAL COMMENT 

Envisioning a Quantum Supercomputer 

Since the publication of my report (I), 
several readers have written to discuss issues 
that I originally treated peripherally. In 
addition, I have become aware of additional 
references that supply useful information 
about aspects of quantum computation. A 
full treatment of physical effects that would 
arise in the complicated quantum-optical 
device proposed will be given elsewhere. 
The following questions have been asked. 

1) Wouldn't the localized excitations bv 
means of which information is registered 
rapidly delocalize as excitations "hopped" 
or tunneled along the polymer chain? 

The excitations would eventually hop 
and delocalize, but the rate at which they 
would do so would be suppressed because 
they would have to tunnel through several 

causes the computation to reverse itself) 
and of error generation in quantum com- 
puters in general have been investigated 
extensively by Landauer (2-4), who has 
noted that eventually error correction 
would be required in quantum computers 
and that it would cause a loss of coherence. 
This loss of coherence would be evident in 
the proposed device because error correc- 
tion is accomplished by spontaneous emis- 
sion, with accompanied phase randomiza- 
tion; but because the computation would be 
moved forward from state to state by a 
sequence of externally applied pulses, re- 
flection would not be a problem. If an 
imperfection were large enough to throw a 
unit completely off resonance, however, 
then the whole computation would grind to 
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Because the lifetimes of the. excited states 
are lone. inelastic scattering would be min- 
imal, and the entropy of ;he light would 
increase by considerably less than k,T per 
bit flipped, where kB is Boltzmann's con- 
stant and T is the -ambient temperature. 
Dissipation may be greater than this in 
whatever mechanisms produce and absorb 
the light, but the logical updating process 
itself would be essentially free of dissipation 
except for error correction. 

The main evidence that pulses do not 
destroy coherence is experimental: If deco- 
herence were at all substantial, then the 
spin-echo effect and its various incarnations 
(in nuclear magnetic resonance and optical 
technologies), in which hundreds of pulses 
can be delivered without destrovine coher- , - 
ence, would never have been experimental- 
ly verified. 

Seth Lloyd 
T-13 Complex Systems, MS-B2 13, 

Los Alamos National Laboratory, 
Los Alamos, NM 87545 

units with significantly different excitation a halt. 
energies. For relatively weak interactions 3 )  Wouldn't the scattered light depend REFERENCES 
between units, the characteristic hopping on the logical state of the computer, there- S, Lloyd, Science 261, 1569 (1993), 
time would generally be longer than the by causing dissipation and inducing deco- 2. R. Landauer, Phys. Today 44, 23 (May 1991). 

spontaneous emission time. herence [for example (3)]? 3. , Physica A 168, 75 (1 990); Proceedings of 
the 3rd International Symposium o n  the Founda- 

2) Wouldn't imperfections in the poly- How the light of .rr pulses is scattered tions of Quantum Mechanics, Tokyo, 28 to 31 
mer or lattice of spins cause errors? would depend on the logical state, but in ~ u g u s t  1989, p. 407. 

Indeed they would. The problems of general the computer could be constructed 4, F i l~ !d i l~ ;  '6 551 (Ig8') " J, Th, 

"reflection" of the computation (in which and programmed so that this dependence 
repeated scattering off of multiple defects would be too weak to induce decoherence. 20 October 1993; accepted 15 November 1993 
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