
MEETING BRIEFS tions, you arrive at the volume of the first, 
smallest sham as a fraction of the unit cube. 

Math Attendees Find There's 
Life After Fermat Proof 
The uncertain status of the recent proof of Femat1s Last Theorem (Science, 24 December 
1993, p. 1967) was the hot topic in the hallways at the joint meetings of the American 
Mathematical Society and the Mathematical Association of America, held 12-1 5 January 
in Cincinnati. But a few other topics did manage to get discussed. Among them: How 
gambling pays off in computing the volume of high-dimensional shapes; how a mathematical 
description of water dripping down a window pane might lead to the design of digital 
pulses that could race through the optical fibers of the future; and how one can be fooled 
infinitely often by another theorem of Fermat's. 

A Game of Darts and a Drunkard's inside the cube and counting the fraction 
Stagger that land within the region. 

This method is now beeinnine to offer the 
Computing the "volume" of objects with 
more than three dimensions might sound an 
arcane pursuit, but it's actually the first step 
in many real-world problems, from high-en- 
ergy physics to multivariate statistics. Con- 
ceptually, the calculation is straightforward. 
But as a practical matter, the computation 
can be so labor-intensive that it exceeds the 
capacity of the fastest 
computers, even if 
one is only looking for 
an approximate an- 
swer. The reason is 
that the amount of 
work it takes to com- 
pute the size of an n- 
dimensional object 
generally grows ex- 
ponentially with n. 
At the Cincinnatti 
meeting, however, 
h z l 6  Lov6sz of Yale 
University and the 
Eijtviis LorAnd Uni- 
versity in Budapest 
described a labor-sav- 

" - 
promised speedup, but it's been a long time 
coming. The basic dart board method, in 
fact, offers no speedup at all, since high- 
dimensional targets are often so much 
smaller than the objects they sit in. For ex- 
ample, a unit "sphere" sitting inside the unit 
cube in n dimensions occupies less than 
112" of the cube's volume if n is greater than 

12. The result is that 
for, say, a 20-dimen- 

5 sional sphere, the 
$ dart board-the cube l5 ' -is so much larger 

than the target that 
the first billion or 
more darts are not 
likely to hit the 
sphere at all. It would 
take budget-deficit- 
like numbers of darts 
to obtain even a 
single decimal point's 
worth of accuracy. 

But there are wavs 
to make the approxi- 

I mation method work. 
i ngsmte~ :  gambling. Drun1cara.s wa~m. mnnnea wtnm a n~gn-al- Abreakthroughcame 

The idea of gam- mensional shape, they lead to random points in in 1989, whenMartin 
bling-trying lots of a short-cut for estimating a smaller shape's size. Dyer at the Univer- 
numbers at random- sity of Leeds in En- 
to speed up a calculation actually goes back gland and Alan Frieze and Ravi Kannan at 
to the 1940s, when the Polish-American Camegie Mellon University fbund a random 
mathematician Stanislaw Ulam introduced algorithm for approximating volume whose 
the "Monte Carlo method," a technique computational demands grew with the 27th 
widely used in statistical physics. Applied to power of the dimension, rather than expo- 
determining the size of an object, the idea nentially. To ordinary folks, that won't 
resembles throwine darts: If the darts are sound like much of a shortcut. but the tech- 
thrown at random; the fraction that hits a 
particular region of the dart board-say a 
picture of your ex-boyfriend-is equal to the 
fraction of the board occupied by the region. 
Likewise, if an n-dimensional region sits in- 
side an object of known size-say a "cube" 
with sides of length 1-then its volume can 
be approximated by picking random points 

nique opened the way to further improve- 
ments. The basic idea is to place the 
n-dimensional shape in question within a 
nested set of n-dimensional shapes, each a 
little larger than the one inside it, working 
up to the unit cube. The dart board for figur- 
ing the volume of each shape is the next 
larger shape; by combining all the computa- 

Because of the nesting, each "target" oc- 
cu~ies a substantial fraction of the board 
around it, and it turns out that the resulting 
speedup more than offsets the need to repeat 
the computation many times while working 
up through the series of dart boards. But this 
strategy raised a new problem: making sure 
all the random darts hit the right dart board 
during each successive computation. Dyer, 
Frieze, and Kannan's answer resembles a 
drunkard's stagger: taking a single dart that's 
already hit the board and moving it by small 
steps in random directions, making sure that 
it does not move off the board. 

Though Dyer, Frieze, and Kannan's origi- 
nal random algorithm was still far too slow 
for practical application, a series of refine- 
ments in the last 4 years have boosted its 
efficiency. Most recently, Kannan, Lovhz, 
and Mikl6s Simonovits of the Hungarian 
Academy of Science in Budapest have re- 
duced the computational demands to the 5th 
power of the dimension, and, if a certain 
conjecture proves correct, to the 4th power. 

The latest bounds bring the algorithm 
much closer to practicality. Increasingly pow- 
erful computers will do their part as well, but 
they can't take the place of efficient algo- 
rithms, says Lovasz, because bigger machines 
will only tempt users to tackle bigger prob- 
lems. In fact, he says, "the faster computers 
become, the more need there is to use so- 
phisticated methods." 

A Compact Model Heads for the 
Data Highway - 
Bumper-to-bumper traffic normally proceeds 
at a crawl, if it manages to move at all. But in 
principle there's no reason cars can't cruise 
along inches apart at 70 miles per hour. Stan- 
dard light waves on an optical fiber, how- 
ever. must maintain a minimum distance be- 
tween consecutive pulses, or else the infor- 
mation they carry will be garbled. But new 
mathematics holds out hope that future fi- 
bers could be designed to carry digital mes- 
sages bumper-to-bumper at the speed of 
light. The benefit, of course, is that much 
more information could flow over the fibers 
of, say, A1 Gore's national data highway. 

The key to this mathematical scheme for 
crowding more traffic onto the data high- 
way is generating optical signals that keep 
out of each other's way. Ordinary light 
pulses smear out with time; more durable 
signals called solitons have long, weak tails 
that can interfere with each other. But sie- 
nals described by a new class of equations 
start off compact and stay that way, the- 
orist Mac Hyman of Los Alamos National 
Laboratory said in an invited talk. As a re- 
sult, these waves, dubbed "compactons," 
might open the way to packing informa- 
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tion more tightly onto optical fibers. 
Because of the optics of current fibers, 

most of the signals now traveling the infor- 
mation highway are described by traditional, 
linear wave equations. Such waves are sub- 
ject to an effect called dispersion, which 
causes the signals to break apart, because 
higher-frequency components ounace their 
lower-frequency cousins. That effect stretches 
the signals, making it necessary to space 
them out along the fiber and periodically 
interrupt the pulses to restore them to their 
original form. 

In the 1980s, researchers began experi- 
menting with optical fibers on which the 
governing equations are nonlinear. These 
equtions have solutions that form "solitary 
waves," or solitons: highly localized waves 
that travel without suffering dispersion. But 
in the eauations that have been considered 
up to now, each solitary wave has a pair of 
infinitely long "tails," one in front and one 
behind the peak of the wave. If a wave creeps 
up on another's tail, they interact in com- 
plicated ways that can garble the signal. 

Now Hyman and Philip Rosenau at the 
Technion in Haifa, Israel, have developed a 
new class of tailless solitons. These "com- 
pact" waves, or compactons, behave much 
like cars: "They have absolutely no knowl- 
edge of each other until they touch," ex- 
plains Hyman. 

The key advance occurred to Rosenau 
and Hyman when they were thinking about 
how to describe the way water drops smear 
out as they drip down a window pane-a 
physical phenomenon in which dispersion 
plays a key role. But once they got the equa- 
tions, Hyman says, they dropped the original 
problem and began exploring the mathe- 
matics. The result was several classes of wave 
equations in which adding an extra nonline- 
arity to the "dispersion term," which governs 
the stability of the wave's shape, changes 
traditional solitary waves with tails into 
compact waves. 

f i a t  nonlinearity might prove to have 
practical value if researchers could find - o r  
manufacturematerials that are consistent 
with the new equations. In the meantime, 
Rosenau and Hyman are experimenting with 
these waves mathematically by, among other 
things, colliding them deliberately. When 
solitons collide, the two waves neither fuse 
nor shatter; instead, they seem to pass 
straight through each other. The same is true 
of com~actons. but thev also leave behind an 
apparehtly endless striAg of tiny ripples. 

The ripples "surprised the heck out of 
me," Hyman told Science. Understanding 
what causes them, and more generally how 
nonlinear dispersion affects the propaga- 
tion of waves, is likely to keep theorists busy 
for years to come. Jokes Hyman: "I'm kind 
of throwing up my hands and hoping the 
graduate students dig into it." 

The Little Theorem That 

Fermat's Last Theorem gets all the press, but 
number theorists actually get more mileage 
out of another finding of the French math- 
ematician, which they call Fermat's "little" 
theorem. Unlike Fermat's Last Theorem, 
which, in spite of the headlines, is mainly a 
mathematical curiosity, Fermat's little theo- 
rem is a workhorse. Among other things, it's 
a quick way to test whether a large number is 
prime or composite, a problem that often 
comes up in cryptography, for example. That 
workhorse, however, has just lost some of its 
power, with a finding by three mathemati- 
cians at the University of Georgia. 

Number theorists have known for nearlv 
100 years that some composite numbers slip 
past Fermat's little theorem. There was a 
chance that the little theorem might retain 
much of its value for prime testing if the 
number of these impostors was limited: Any- 
one using the theorem as a prime test could 
simply check the result against the list of 
known impostors. No such luck, as Carl 
Pomerance, one of the three theorists, told 
his colleagues at the Cincinnati meeting. 
There are, in fact, infinitely many impostors. 

Fermat's little theorem asserts that if n is a 
  rime number. then it will be a factor of 
an - a, with a being any integer. For example, 
5, being prime, divides Z5 - 2 = 30. On the 
other hand, 6 does not divide 26 - 2 = 62, 
showing that 6 is composite. As it turns out, 
it usually doesn't take a lot of tries with differ- 
ent values ofa to ferret out a composite; most 
of the time, if n is composite, it fails to divide 
2" - 2-and if it passes that test, it's likely to 

fail the test with 3" - 3. But some composites, 
such as 561,1105, and 1729, "pass"Fermat's 
little theorem for aU numbers a. 

The first to recognize these phonies was 
the American mathematician Robert Car- 
michael, around 1910; since then, they've 
been called "Carmichael numbers." Now it 
seems that Carmichael has more name- 
sakes than he could have known. Usine - 
techniques from analytic number theory and 
some relatively recent results in abstract al- 
gebra, William "Red" Alford, Andrew Gran- 
ville, and Pomerance built on a scheme for 
conjuring up Carmichael numbers put for- 
ward in 1956 by the Hungarian mathema- 
tician Paul Erdos. The trick, Erdos proposed, 
is to identify large sets of prime numbers that 
can be combined to form Carmichael num- 
bers, then count up all the possibilities. 

Erdos' argument suggested that such sets 
ought to be relatively easy to find. In practice 
it takes ingenuity, but in one computer run, 
Alford produced an example that gave rise 
to 212' Carmichael numbers. However. to 
prove that there is an infinity of these ersatz 
 rimes, the theorists had to render certain 
parts of Erd6s' argument rigorous. Their 
main result is that there are at least fl Car- 
michael numbers less than any (suitably large) 
number x. That's enough to prove there are 
infinitely many Carmichael numbers, but it 
probably underestimates their frequency. 
According to Pomerance, the exponent 217 
should be replaceable by any power less than 
1. The upshot: If Fermat's little theorem tells 
you a number is composite, you can rest as- 
sured it is. but if it tries to tell vou the number 
is prime, iake the answer wi& a grain of salt. 

-Barry Cipra 

A Do-It-Yourself Fermat Proof 
Unlike his famous "lastn theorem, Fer- 
mat's little theorem is easy to prove. 
One proof of the assertion, that any 
prime n will be a €actor of an - a, with - 
being any integer, boils down to put 
ting colored pebbles around a circle. 
Forspecificity, here's how the argument 
goes to show that 11 divides 311 - 3. 

At each of 11 points around a circle, place a pebble of one of three colors (left). There 
are 311 different ways to do this, of which 3 patterns use only one color each. The 
remaining 311 - 3 patterns, however, are not really all different: Each one is related to 10 
others, which are just rotations of it. These patterns, therefore, clump together in groups 
of 11, which means that 11 must divide 311 - 3. 

When the number of points is increased to 12, a composite number, some of the 312 
- 3 patterns belong to groups of less than 12 (there are only three different rotations of 
the pattern at right, for example). Thus, 12 need not divide 312 - 3 (and it doesn't). 

This argument--easily verified with a calculator-works the same way for any 
number a in place of 3 and any prime number n in place of 11: The prime number will 
pass the test. Unfortunately, not all composite numbers fail, and the number that don't 
has just been shown to be infinite (see main story). 

-B.C 
IY - 
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