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Actiiation ofthe phospholipase D (PLD) pathway is a widespread response when cells are tuting activity was found for both chro- 
activated by agonists that bind receptors on the cell surface. A 16-kD cytmlic component matographic stages. The active fractions 
can reconstitute guanosine triphosphate (GTP)-mediated activation of phospholipase D contained a 20-kD protein identified by 
in HL60 cells depleted of their cytosbl by permeabilization. This factor was purified and SDS-polyacrylamide gel electrophoresis 
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amount of this protein was proportional to 
the amount of reconstituting activity (Fig. 
IF). Both peaks of reconstituting activity 

Phospholipase D hydrolyses phosphatidyl- Hydrolysis of PC by PLD generates choline contained a protein with an apparent mo- 
choline (PC) to produce phosphatidic acid and PA, but in the presence of 2% ethanol, lecular size of 20 kD. The proteins were 
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neurotransmitters, and growth factors. with [3H]alkyl-lyso-PC were monitored. activities closely match the sequences of 
Alternatively, PA can be metabolized to Both assays gave identical results, so in ARFl and ARF3, respectively. ARFl and 
diacylglycerol, which can activate protein subsequent studies only release of rH]- ARF3 are GTP-binding proteins that be- 
kinase C. choline was measured. A single peak of long to the Ras superfamily (Fig. 2) (6, 7). 
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To further confirm that the two ARF 
proteins were responsible for the GTP- 
dependent activation of PLD, the mixture 
of ARFl and ARF3 obtained after gel fil- 
tration was analyzed by cation exchange 
chromatography (6). Two peaks of recon- 
stituting activity were found and shown to 
match the elution of the two 20-kD pro- 
teins (8). Table 1 summarizes the purifica- 
tion of ARFl and ARF3 from the bovine 
brain cytosol with chromatography on a 
cation exchange column. Yields of ARF3 
were variable from preparation to prepara- 
tion regardless of the final step in the 
purification. The purification protocol was 
optimized for speed rather than recovery 
and thus resulted in low yield. 

Reconstitution of activation of PLD was 
dependent on ARF1 concentration; even at 
the highest available concentration, satura- 
tion was not observed (Fig. 3A). This 
indicates a stoichiometric rather than a 
catalytic activation of PLD by ARF1. Cy- 
tosol from HL60 cells also contains ARF 
proteins (8) and HL60 cells express genes 
for ARF1, 3, 4, 5, and 6 (10). We used 
partial purification of ARF proteins by gel 
filtration and assay by GTP-y-S binding (9) 
to estimate that the highest concentration 
of ARFl used in our reconstitution repre- 
sents no more than 20% of that originally 
present in HL60 cells. However, it is cur- 
rently not known whether ARFs 4 ,5 ,  and 6 
can also activate PLD. 

Reconstitution of PLD activity was de- 
pendent on the presence of a GTP analog 
(Fig. 3B). It was most effective with GTP- 
y-S but GppNHp (guanosine 5'-[py-imi- 
doltriphosphate) , GppCH2p (guanosine 5'- 
[py-methyleneltriphosphate), and GTP 
also supported activation. GDP or alumin- 
ium fluoride was ineffective. The maximal 
effective concentration of GTP-y-S was 10 
pM (Fig. 3B). The activation of PLD by 
ARFl was observed at 100 nM Ca2+ but 
was greatly enhanced at 10 FM Ca2+ (Fig. 
3, A, C,  and D). Activation of PLD was 
linear at either concentration of Ca2+ for at 
least 1 hour (Fig. 3, C and D). Because the 
cells were grown in the presence of [3H]- 
choline for 48 hours, the PC was labeled to 
equilibrium. It is possible to calculate the 
amount of PC hydrolyzed because 90% of 
the label was incorporated into PC (4). 
Seven percent of total PC was hydrolyzed 
under maximal stimulation. 

For comparison with purified bovine 
ARF1, recombinant ARFl (rARF1) was 
expressed and purified (1 1) (Fig. 4, A and 
B). Samples obtained after gel filtration 
were pooled and used in the reconstitution 
assay. Reconstitution was dependent on 
GTP-y-S and the amount of rARFl added 
(Fig. 4C). Saturation with rARFl was not 
observed. The amount of rARFl required 
for GTP-dependent activation of PLD was 

greater than that of the native protein 
(Figs. 3A and 4C) ; this discrepancy is most 
likely attributed to the lack of myristoyla- 
tion of rARF1. The characteristics of re- 
constitution with rARFl were otherwise 
similar to those observed with purified bo- 
vine ARFl (Fig. 4D). 

ARFI and ARF3 belong to a multi-gene 
family that has been found in all eukaryotic 
cells tested including human. bovine. rat, - , . 
mouse, chicken, yeast, and slime mold 
(10). ARF was orieinallv identified as a . , - ,  

cofactor required for efficient adenosine di- 
phosphate (ADP)-ribosylation of the het- 
erotrimeric GTP-binding protein (G pro- 
tein) G, by cholera toxin (12). Subsequent- 
lv. it was shown to be a GTP-binding , , - 
protein with structural similarity to both 
monomeric and heterotrimeric GTP-bind- 

Fig. 2. Identification of the reconsti- 
tution factors as ARFl and ARF3 by 
sequence analysis. Samples of activ- 
ity peaks 1 (major protein peak) and 
2 (minor protein peak) obtained after 
phenyl-Superose chromatography 
were sequenced as described (28, 
29). Peak 1 peptides are shown in 
plain and peak 2 peptides in italic 
type. The single cysteine residue in 
peak 1 (residue 159) was the acryl- 
amide derivative. Compar~son of the 
initial peptide sequences from peak 
1 with the Swissprot and NBRF data- 
bases with the FASTA program [Ge- 
netics Computer Group (1991), Wis- 

ing proteins (1 3). ARF is a subunit of the 
coat of Golgi-derived coated vesicles (14, 
15). ARF participates in the process of 
intracellular vesicular transport and is 
thought to bind to Golgi membranes, lead- 
ing to the subsequent binding of the coat- 
amer and vesicle budding (1 6). ARF may 
also function in endosome-endosome fusion 
(1 7) and in nuclear vesicle dynamics (1 8). 
Binding of ARF to the Golgi complex can 
be regulated by immunoglobulin E receptors 
or protein kinase C (1 9). 

ARF's role in vesicular trafficking may 
be related to its ability to activate PLD. 
The hydrolysis of PC by PLD may regulate 
the fusion or fission process. Indeed the 
ratio of PI (phosphatidylinositol) to PC 
may be important in vesicular trafficking, 
and mutations in a PI transfer protein 

I 5 0 
.LFF1 MGNIFANLFKGLFGKKEHRILWGLDPSIGKTTILYKLKLGEIVTTIPTIG 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . .  AXF2 V.EK.F.S.F... 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . .  ARF? I.GN.L.S.1. 

: LMVGLDASGK LGEIVTTIPTIG 
T T I L Y K  L G E I V T T I P T I G  

NI SFT\qlDVGGQDK BYFQNTQGLIFVVDSNDRER 
FhVE Y E  Y.K 

NISFWI1'DL'GGQD.K .I'YFQNTQGLIFWlDSNDRER 

10i 150 
ARFl >!;TERREELMWLMDELRDAVLLVFAhJKODLPN.W&n>2ITDKLGLHSLRE ~- - 

. . . . . . . . . . . . . . . .  . . . . . . .  A?F2 T ......................... Q 
. . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . .  AZF3 M.. A E 

NLAEDELRDP.VLLVFANK 
QDLPN-WLNAAEI TDK 

LGLHSLR 
QDL PNA%'AAE I T D K  

consin] revealed similarit; to the se- 151 + 1 8 i  
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ed bovine type I I  cDNA sequence -- 

(ARF2); sequence Identities are represented by dots and differences are shown ~n bold type. The 
boxed peak 1 peptide sequence contained no phenylthiohydantoin-alanine at cycle 23 (+), thereby 
identifying peak 1 as ARFI. Seven tryptic peptide sequences derived from peak 2 faded to 
distinguish between ARFl and ARF2 or ARF3. Therefore, HPLC fractions derived from an 
endoproteinase-Asp-NH, digest of peak 2 were screened for the COOH-terminal peptide (amino 
acld residues 171 to 181) by diode array spectroscopy, for a tryptophan residue (W) ,  and by mass 
analysis. The underlined sequence was obta~ned showing peak 2 to contain ARF3. 

Table 1. Purification of ARFI and ARF3. Cytosol from a bovine brain (300 g) was fractionated 
Protelns precipitated between 40 and 70% saturation wlth ammonium sulfate (AS ppt) were 
collected and subjected to sequential chromatography on DE52, heparin Sepharose (Hep Sep.), 
and gel filtration (GPC) columns. The ARF proteins were then separated by cation exchange 
chromatography (Mono-S Pharmacia). The sample obtained after gel filtration was desalted and 
exchanged into 50 mM malonic acid buffer (pH 5.35) on Sephadex G-25 and loaded onto a Mono-S 
H R  515 column equilhbrated in the same buffer. ARFs 1 and 3 were separated on a linear gradlent 
of 0 to 300 mM NaCI. The specific activity refers to the release of labeled choline per minute per 
milligram of protein in the reconstitution assay. 

Total protein Specific activlty Yield Purification 
Fraction 

(mg) (lo3 dpm mln-' mg-') w) (fold) 

Cytosol 4829 
AS PPt 1439 
DE52 249 
Hep Sep. 16 
GPC 0.43 
Mono-S(I) 0.3 
Mono-S(II) 0.03 
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(SEC-14 mutant) in yeast can be rescued by 
mutations that decrease synthesis of PC 
(20). PLD can decrease the concentration 
of PC and therefore influence the PI:PC 
ratio in a membrane. 

The fusion or fission process may also be 
influenced by PA derived from the hydro- 
lysis of PC by PLD. In many cell types, 
including HL60 cells and neutrophils, the 
addition of short chain alcohols such as 
ethanol (0.5 to 2%) inhibits secretion (3). 
Alcohols at these concentrations interfere 
with the production of PA by PLD by 
competing with water and taking part in a 

transphosphatidylation reaction, thereby 
producing the corresponding phosphatidyl- 
alcohol at the expense of PA (21). Thus, by 
diverting PA to PEt, secretion is inhibited. 
Ethanol also inhibits the production of 
coated vesicles and buds in vesicular trans- 
port (22). The effects of ethanol on vesic- 
ular transport may be due to the interfer- 
ence with the production of PA by PLD. 

Addition of GTP-y-S to permeabilized 
cells activates both heterotrimeric and mo- 
nomeric GTP-binding proteins. On the 
other hand, fluoride in the presence of 
aluminium only activates heterotrimeric G 

proteins (23). Fluoride activates PLD when 
added to intact HL60 cells and neutrophils 
(24) but is only effective in permeabilized 
HL60 cells if GTP is also oresent (8). 
Furthermore, occupancy of the-fMetLeu~he 
receptor by the agonist activates two per- 
tussis toxin-sensitive G proteins, G2 and 
G,, and activation of PLD by fMetLeuPhe 
is inhibited by pertussis toxin (25). These 
results support the view that ARF activa- 
tion occurs after the activation of a G 
protein. A role for G proteins in vesicular 
transport has recently been suggested (26). 

REFERENCES AND NOTES 
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Maspin, a Serpin with Tumor-Suppressing Activity 
in Human Mammary Epithelial Cells 

analysis (9) of Xba I-restricted DNA from 
normal and tumor cells with a maspin 
complementary DNA (cDNA) probe re- 
vealed no gross structural alterations of the 
maspin gene in the tumor cells. This result 
suggests that the maspin gene is down- 
regulated but not mutated in cancer cells. 

Maspin cDNA was isolated from a li- 
brary prepared from normal human mam- 
mary epithelial (76N) cells. The cDNA 
sequence contains 2584 nucleotides, in- 
cludine 75 nucleotides of 5' and 1381 nu- - 
cleotides of 3' untranslated sequence. It 
encodes a protein of 375 amino acids, with 
an NH2-terminal methionine and COOH- 
terminal valine, and eight internal cysteine 
residues that may form two or more disulfide 
bonds to stabilize the protein's tertiary 
structure (Fig. 2A). The initiation codon 
and surrounding nucleotides fit the Kozak 
consensus (1 0). . , 

Maspin displays significant sequence 
similar& to the se&in A~erfamilv ofserine 
protease' inhibitors ' ( ~ i ~ .  >B), with highest 

Zhiqiang ZOU, Anthony Anisowicz, Mary J. C. Hendrix,* amino acid identity to the equine and 
Ann Thor, Mark Neveu,? Shijie Sheng, Kristina Rafidi, human neutrophil-monocyte elastase inhib- 

Elisabeth Seftor," Ruth Sager* itors (43% and 39%, respectively), human 

A gene encoding a protein related to the serpin family of protease inhibitors was identified 
as a candidate tumor suppressor gene that may play a role in human breast cancer. The 

U? 0 7 

;?,,,"Dm 

gene product, called maspin, is expressed in normal mammary epithelial cells but not in g ~ z z z z 5 & 2 2 2  
b%eNNNNSz+N 

most mammary carcinoma cell lines. Transfection of MDA-MB-435 mammary carcinoma 3 o kb - Maspn 

cells with the maspin gene did not alter the cells' growth properties in vitro, but reduced -3684 

the cells' ability to induce tumors and metastasize in nude mice and to invade through a 1 2 3 4  5 6 7 8 9 1 0 1 1  
basement membrane matrix in vitro. Analysis of human breast cancer specimens revealed 
that loss of maspin expression 0 ~ ~ u r r e d  most frequently in advanced cancers. These ~lg. 1. Northern (RNA) blot analysis of maspin 
results support the hypothesis that maspin functions as a tumor suppressor. mRNA in normal and tumor cells. Total cellular 

RNA was isolated from exponentially growing 
cells cultured in DFCI-1 medium (8). Total RNA 
(20 k g  of RNA per lane) was subjected to 

W e  have used subtractive hybridization mammary epithelial cell strains (8), but not electrophoresis On a formaldehyde-agar- 

(1-5) and the "differential display" method in most mammary tumor cell lines exam- ose gel, transferred to nylon membrane, and 
hybridized with a 32P-labeled maspin probe. 

(6, 7) to identify candidate tumor suppres- ined (those shown in Fig. 1, as well as Lanes labeled 70N, 76N, and contain RNA 
sor genes that are defective in human breast MDA-MB-157, MDA-MB-231, MDA- from normal breast epithelial cells; all other 
carcinoma cells. These genes, now totaling MB-436, MDA-MB-468, BT-549, and Hs lanes contain RNA from breast tumor cells. 
more than 30, were identified initially by 578T cells) nor in foreskin- or breast-de- 21 NT and 21 PT are primary tumor lines; 3684 is 
searching for rnRNAs whose expression is rived fibroblasts (9). Southern (DNA) blot a loading control (5). 
reduced or absent in tumor cells compared 
with normal cells grown under similar con- 
ditions. Table 1. Tumorigenicity of maspin-transfected MDA-MB-435 cells. Cells (5 x lo5) were resuspend- 

one of the genes we have identified by ed in phosphate-buffered saline and injected into the mammary fat pads of nude mice. Each mouse 
was injected at two sites. In one experiment, the mice were 8 to 10 weeks old when injected; in the 

this approach encodes a member of the second, they were 4 to 6 weeks old. Tumor development was monitored weekly. Numbers in 
serpin family of Protease inhibitors, which parentheses are the numbers of tumors at 10 weeks after injection. The number of tumors is smaller 
we have termed "maspin." A single 3.0-kb at 10 weeks than at 6 weeks because some animals died. CA, carcinoma; ND, not done; NT, no 
maspin mRNA is expressed in normal tumor. P = 0.034 for mice T1 through T6; P = 0.00057 for mice T4 through T6 (Student's one-sided 

t test). 
Z. Zou, A. Anisowicz, M. Neveu, S. Sheng, K. Rafidi, R. 
Sager, Division of Cancer Genetics, Dana-Farber Can- 
cer Institute, 44 Binney Street, Boston. MA 021 15. Tumorslsites Mean tumor Metastases 
M. J. C. Hendrix and E. Seftor, University of Arizona Cells injected weight at 
Cancer Center, Tucson, AZ 85724. at 6 weeks 10 weeks (g) Lung Lymph nodes 
A. Thor, Department of Pathology, Massachusetts 
General Hospital, 100 Blossom Street. Boston. MA ~CMvneo N1 811 0 0.74 (7) C A C A 
02114. pCMVneo N2 1 011 0 1.77 (6j C A CA 

'Present address: Pediatric Research Institute, 3662 ~CMVmaspin T1 811 0 1.67 (4) ND ND 
Park Avenue. St. Louis. MO 631 10. pCMVmaspin T4 611 0 0.31 (7) NT NT 
tPresent address: Pfizer Central Research Building, pCMVmaspin T5 511 0 0.35 (7) NT NT 
Groton, CT 06340. p ~ ~ ~ m a s p i n  T6 811 0 0.43 (9j NT NT 
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