
nental regions (24), Greenland is influ- 
enced by a heterogenous collection of mois- 
ture sources. The ultimate signature of 
these moisture sources is determined by a 
variety of climate processes, and therefore, 
meaningful interpretation of the Greenland 
ice core record, including the implications 
for future climate, can only be achieved by 
appeal to a multidimensional perspective. 
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Large First Hyperpolarizabilities in Pus h-Pull 
Polyenes by Tuning of the Bond Length 

Alternation and Aromaticity 

Seth R. Marder,* Lap-Tak Cheng, Bruce G. Tiemann, 
Andrienne C. Friedli, Mireille Blanchard-Desce, 

Joseph W. Perry, Jrargen Skindhraj 
Conjugated organic compounds with 3-phenyl-5-isoxazolone or N,N'-diethylthiobarbituric 
acid acceptors have large first molecular hyperpolarizabilities (P) in comparison with 
compounds with Cnitrophenyl acceptors. For example, julolidinyl-(CH=CH),-CH=N,N'- 
diethylthiobarbituric acid, which has 12 atoms between the donor and acceptor, has a P(0) 
of 91 1 x 1 0-30 electrostatic units, whereas (CH3),NC,H4-(CH=CH),-C6H4N02, with 16 
atoms between its donor and acceptor, has a p ( 0 )  of 133 x 1 0-30 electrostatic units. The 
design strategies demonstrated here have resulted in chromophores that when incorpo- 
rated into poled-polymer electrooptic modulators exhibited significant enhancements in 
electrooptic coefficients relative to polymers containing the commonly used dye Disperse 
Red-1 . Poled polymer devices based on these or related chromophores may ultimately lead 
to high-speed electrooptic switching elements with low drive-power requirements, suitable 
for telecommunications applications. 

T h e r e  is currently a concerted effort in 
industry, academia, and government lab- 
oratories to develop high-performance 
electrooptic switching elements for tele- 
communications, optical information pro- 
cessing, and sensors, based on poled poly- 
mers containing organic second-order 
nonlinear optical (NLO) chromophores. 
Substantial progress has been made in 
demonstrating that stable, optical quality 
devices can be fabricated. However, dra- 
matic improvements in the electrooptic 
coefficients are required if these devices 

are to have wide-ranging application in 
photonic systems. This realization has cre- 
ated a pressing need for organic chro- 
mophores with an order-of-magnitude in- 
crease in the molecular first hyperpolariz- 
ability, P, over those of commonly used 
chromophores, such as the well-known 
Dis~erse Red-1. We svnthesized chro- 
mophores with greatly enhanced P by a 
basic design strategy that was proposed 
earlier (1) and is outlined below. 

With a two-state model (2-4), it was 
shown that there is an optimal combina- 
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tion of donor and acceDtor strengths for a - 
given bridge that leads to a balance of 
electronic asymmetry and polarizability 
that maximizes p (1). We have been 
exploring the hypothesis that the differ- 
ence between the average lengths of car- 
bon-carbon single and double bonds [that 
is, the bond length alternation ((Ar))] in 
donor-acceptor-substituted polyene and 
~olvmethine dves is a useful structural 
& ,  

parameter to examine when establishing 
generalized structure-property relations for 
organic materials exhibiting second-order 
NLO effects (5, 6). Reduction of bond 
length alternation takes a molecule from 
the bond-alternate polyene limit (in 
which onlv one canonical resonance struc- 
ture contributes predominantly to the 
ground state of the molecule) to the bond- 
equivalent cyanine limit (in which two 
canonical resonance structures contribute 
equally to the ground-state structure of the 
molecule) (7-9). Electric field-dependent 
calculations of molecular geometry and P 
indicate that for molecules with a high 
degree of bond length alternation, such 
as polyenes with weak donors and accep- 
tors, p is initially positive; then, as a 
function of increasing polarization and 
decreasing (Ar), p first increases, peaks in 
a positive sense, decreases, crosses through 
zero at the cyanine limit where (Ar) = 0 A 
(Fig. I ) ,  and becomes negative when the 
ground state of the molecule is zwitterion- 
ic, having both positive and negative 
charges (5, 6). From these calculations, 
we estimate that the positive peak for p 
occurs at roughly (Ar) = 0.03 to 0.05 
A (5, 6). Most molecules that have been . .  , 

examined in the past, such as donor- 
acceptor-substituted stilbenes (10) or 
diphenyl polyenes, do not have sufficiently 
strong donors and acceptors to give the 
(Ar) needed to maximize P. The high 
degree of bond length alternation ob- 
served in the central polyene bridge of 
donor-acceptor-substituted stilbenes and 
related molecules is indicative of an insuf- 
ficient contribution of the charge-separat- 
ed resonance form to the ground-state 
configuration of the molecules and is a 
consequence of the loss of aromatic stabi- 
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Bond length alternation (A) 

lization in the charge-separated form. We 
therefore designed donor-acceptor poly- 
enes in which the loss of aromaticitv 
in one end upon charge separation (in 
this case. the donor end) would be some- 
what offset by a gain in aromaticity upon 
charge separation in the opposite end. We 
predicted that such molecules would 
have more nearly the correct contribution 
of the charge-separated form to the 
ground-state structure required to reach 
the bond length alternation at which P is 
maximized. 

Compounds with acceptors that can gain 
aromaticity in their charge-separated reso- 
nance forms, such as (CH,),NC,H, 
(CH=CH),-A and julolidinyl-(CH=CH),- 
A, where A is N,N1-diethylthiobarbituric 
acid (series l[n] or 2[n], respectively) or 
3-phenyl-5-isoxazolone (series 3 [n] or 4[n], 
respectively) for n = 0 to 3 (Fig. 2), have 
large p values and reduced (Ar) in compari- 
son with compounds for which A = C,H4- 
NO,. We synthesized the molecules in Fig. 2 
by reaction of 3-phenyl-5-isoxazolone or 
N,N1-diethylthiobarbituric acid with (N,N- 
dimethy1amino)phenyl-(CH=CH),-CHO, 
julolindinyl-(CH=CH),,CHO (where n is as 
defined in Fig. 2), or julolidinyl-(CH=CH),- 
C (CH,)=CH-CH=CH-CH=C (CH,)- 
CH=CH-CHO (I I) under standard Knoeve- 
nagel conditions (12). We characterized the 
compounds by 'H nuclear magnetic reso- 
nance and ultraviolet-visible spectroscopy as 
well as elemental analysis and mass spectros- 
copy. We expected that the potential gain in 
aromaticity upon charge separation (Fig. 3) 
would lead to a substantial charge transfer and 
reduced bond length alternation in the 
ground state. Thus, molecules containing ac- 
ceptors whose topology dictates that aroma- 
ticity is gained upon charge separation (such 
as3-phenyl-5-isoxazoloneorN,N'-diethylthio- 
barbituric acid) would have more nearly the 
correct degree of bond length alternation 
needed to optimize P and could thus give rise 
to extremely large optical nonlinearities com- 
pared to conventional molecules of similar 
length. 

We measured the hyperpolarizabilities 
by electric field-induced second harmonic 
generation (EFISH) (1 3-1 6) in chloro- 

Fig. 1. Plot of p versus ( A r ) ,  generated with an 
AM1 geometry optimization (in the MOPAC 
package) for (CH,),N-(CH=CH),-CHO in the 
presence of a static electric field (generated 
with point charges) of varying strength (5, 6). 
For each value of the static field, and thus (Ar ) ,  
p was calculated by a finite-field procedure. 

S [ ~ I  6 

Fig. 2. Structure and labeling scheme for 
compounds investigated in this study. In all 
cases, n = 0 to 3, except for 5 [ n ] ,  where n = 

1 to 4. 

form, with 1.907-pm fundamental radia- 
tion. The values of P we obtained support 
 he hypothesis that molecules of only 
moderate lengths containing the 3-phe- 
nvl-5-isoxazolone or N,Nr-diethvlthiobar- 
bituric acid acceptor can have'unprece- 
dented P values (Table 1). The disper- 
sion-corrected (2-4) P(0) and pP(0) val- 
ues of the n = 0 and 1 compounds, which 
are analogous to ones previously reported 
(1 7-1 9), are not exceptional in compari- 
son to other molecules in the literature. 
However, the longer n = 2 and 3 com- 
pounds exhibit strikingly large P(0) and 
pP(0) values (Table 1) for their lengths. 
The importance of the topology of the .rr 
system is clearly illustrated if one con- 
siders that both (CH,) ,NC,H,-CH=CH- 
C6H4CH0 (6) and julolidinyl-(CH=CH) ,- 
CH=N, N'diethylthiobarbituric acid (2[2]) 
have 10 coniugated atoms between the , u 
amine donor and the carbonyl acceptor, yet 
the former has a P(0) of 20 x 
electrostatic units (esu), whereas the latter 
compound has a P(0) of 490 X esu. 
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d e 
Fig. 3. For compound 1 [I]:  a ,  neutral resonance form; b, one of the charge-separated resonance 
forms; and c, a charge-separated resonance form in which the acceptor ring has aromatic 
character. For compound 3111: d, neutral resonance form; and e, a charge-separated resonance 
form in which the acceptor ring has aromatic character. 

Table 1.  Selected linear (absorption maximum, A,,) and nonlinear optical data for compounds of 
the form in Fig. 2. 

Com- ,"ma CL P P(0) PP PP(O) 
pound (nm) (I  0-30 (1 O - ~ O  (1 0-48 (I  0-48 

esu)* esu)* esu)* esu)* esu)* 

*The error in the measurements is estimated to be +20%. The p values have not been corrected for the electronic 
deformation contribution to the EFlSH signal. t&P  values of the N,N-dimethylthiobarbituric acid analogs of the 
n = 0 and 1 compounds, measured at-1.34 and 1.064 Fm, have been reported previously (17-t9) 

To our knowledge, no compounds with 
values of pP greater than 10,000 x 
esu have been reported, but we found the 
dispersion-corrected pP(0) of julolidinyl- 
(CH=CH) ,-C (CH,)=CH-CH=CH-CH=C 
(CH3)-CH=CH-CH=N,N1-diethylthio- 
barbituric acid (2'[6]) to be - 15,000 x 

esu, more than 40 times pP(0) = 
363 x esu for (CH,),NC,H4- 
CH=CH-C,H,NO, (5 [I]), esu, which is 
commonly used in poled-polymer applica- 
tions. This exceptionally high value is not 
surprising because it has been demonstrated 
that donor-acceptor-substituted carotenoids 
can display large quadratic nonlinearities 
(20, 21). 

Preliminary experiments indicate that 
poled polymers containing the chro- 
mophores in Table 1 exhibit large electro- 
optic coefficients (r3,). For example, poly- 
(methyl methacrylate) (PMMA) guest- 
host films containing 3 [I], 3 [2], 3 [3], and 
1[3], as well as Disperse Red-1 (a chro- 
mophore whose pP is comparable to that 
of 5[1]), at 2% by mole loading, poled at 
10' V cm-l, gave lr33) values at 820 nm of 
5, 10, 24, 52, and 1 pm V-', respectively. 
Although the absorption maximum in the 
visible for 3 [I] is at lower energy than that 
for Disperse Red- 1, the band for the latter 
is much broader, resulting in a lower 
energy cutoff. Therefore, even though 

3[1] has a greater transparency range than 
Disperse Red-1, its nonlinearity at the 
same loading is roughly a factor of 5 
greater. 

The measurements for 3[1], 3[2], and 
Disperse Ked- 1 showed no significant 
imaginary component of the electrooptic 
coefficient; however, the values for 1[3] 
and 3[3] did exhibit imaginary compo- 
nents because of absorption at 820 nm. 
Many telecommunications applications 
will use modulators operating at -1300 
and 1500 nm; thus, although dyes such as 
3[3] and 1 [3] have low-energy absorption 
bands in the visible, they may nonetheless 
be useful at these technologically impor- 
tant wavelengths. Measurements at 1300 
nm for both 3 [3] and 1 [3] gave a nonres- 
onant value of 5 pm V-', suggesting that 
systems with larger loadings of- chro- 
mophores similar to 3[3] and 1 [3] cova- 
lently attached to the polymer could have 
unprecedented nonresonant nonlinearities 
(at this wavelength, the Disperse Red-1 
sample gave a value of 0.8 pm V-l). 

We performed single-crystal x-ray de- 
terminations on julolidin~l-(CH=CH),- 
CH=3-phenyl-5-isoxazolone (4[2]) and 
julolidinyl-(CH=CH) ,-CH=3-phenyl-5-is- 
oxazolone (4[3]) (22) to provide experi- 
mental evidence for the decrease in bond 
length alternation in these highly optically 
nonlinear compounds. Several points about 
their molecular structures are worth noting. 
First, the julolidinyl rings exhibit signifi- 
cant quinoidal character, as evidenced by 
the unequal C-C bond lengths in the rings 
(Fig. 4). 

Second, the difference in length be- 
tween adjacent C-C bonds increases upon 
going from the acceptor (3-~hen~l-5-isox- 
azolone) end to the donor (julolidin~l) 
end of the molecule. Perhaps this can be 
viewed as a result of the acceptor "pulling" 

-on the a electrons more than the donor is 
"pushing" on them. Whatever the case, 
the observation that bond length alterna- 
tion is not constant across the length of 
the polymethine chain is general to the 
eight donor-acceptor polyene compounds 
we have crystallographically characterized 
and may ultimately limit the utility of 
using a single parameter, (Ar), to describe 
the degree of ground-state polarization in a 
molecule. 

Third, 4[2] and 4[3] have (Ar) = 0.05 
and 0.03 A, respectively. For comparison, 
(Ar) in simple polyenes is 0.1 1 A, from the 
crystal structure of 1,3,5,7-octatetraene 
(23) and diphenyl- 1,3,5,7-octatetraene 
(24), and (Ar) for the nonring C-C bonds 
in a donor-acceptor-substituted stilbene is 
0.14 A, from the crystal structure of 
2-methoxy-4'-nitro stilbene (1 0). Thus, 
the values for the 3-phenyl-5-isoxazolone 
acceptor-substituted compounds are sig- 
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Fig. 4. Drawings (made with ORTEP) of (A) 4[2] and (B) 4[3] with 50% probability 
ellipsoids showing the bond lengths for the conjugated pathway between the donor and 
the acceptor. Hydrogen atoms in both structures are shown with thermal parameters one-tenth 
those assigned. 

nificantlv lower than those found in the 
polyene and stilbene compounds men- 
tioned above and are close to the values 
we predict are needed to optimize P. 
However, as noted earlier (25), care must 
be taken in the use of solid-state structural 
data to gain insight about molecular struc- 
ture in solution. 

In general, the solid state behaves like 
an especially polar environment, which 
tends to result in a relatively high degree of 
charge separation and, in this case, a some- 
what low (Ar) relative to what might be 
found for the molecule in a moderately 
polar solvent such as chloroform. On the 
basis of previous studies, we estimate that 
the difference between (Ar) in the solid 
state and in chloroform is less than -0.03 
A, and thus, the structural data reported 
here provide strong evidence for reduced 
(Ar) in 3-phenyl-5-isoxazolone-substituted 
compounds. 

In conclusion. we have demonstrated 
that derivatives containing 3-phenyl-5- 
isoxazolone and N,N1-diethylthiobarbitu- 
ric acid can exhibit very large nonlineari- 
ties in comparison to compounds with 
nitro or simple carbonyl acceptors but 
with bridges that are strongly aromatic. 
Thus, the greater than 25-fold enhance- 
ment of P(0) for 2[2] as compared with 6 

illustrates that judicious manipulation of 
the T-electron system is a key to the 
optimization of hyperpolarizability. Our 
crystallographic structural data demon- 
strate that molecules that have acceptors 
that can gain aromaticity upon charge 
separation have (Ar) values significantly 
lower than those found in polyenes or 
stilbenes, where (AT) is greater than 0.12 
A. Thus, our strategy of reducing bond 
length alternation by tuning the relative 
contributions of neutral and charge-sepa- 
rated resonance to the groundkate struc- 
ture has led to molecules with large non- 
linearities and may result in promising 
materials for electrooptic modulator appli- 
cations. 
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