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Phase Shifting of the Circadian Clock by Induction 
of the Drosophila period Protein 
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Virtually all organisms manifest circadian (24-hour) rhythms, governed by an ill-defined 
endogenous pacemaker or clock. Several lines of evidence suggest that the Drosophila 
melanogasterperiod gene product PER is a clock component. If PER were central to the 
time-keeping mechanism, a transient increase in its concentration would cause a stable 
shift in the phase of the clock. Therefore, transgenic flies bearing a heat-inducible copy of 
PER were subjected to temperature pulses. This treatment caused long-lasting phase 
shifts in the locomotor activity circadian rhythm, a result that supports the contention that 
PER is a bona fide clock component. 

A wide variety of organisms exhibit daily 
fluctuations in many biochemical, physio- 
loeical. and behavioral ohenomena that are ., , 

governed by an endogenous circadian ( ~ 2 4  
hours) pacemaker or "clock" (1). Although 
no bona fide components of a circadian 
oscillator have been identified, a candidate 
is the period (per) gene product from Dro- 
sophila melanogaster (2, 3). In the absence of 
per activity (pero' nonsense mutation), 
there is no observable rhythmicity of eclo- 
sion or of locomotor activity (2). More- 
over, missense mutations shorten (pers) to 
19 hours or lengthen (perL) to 29 hours the 
free-running periods of both rhythms (2). 
Consistent with the possibility that per is 
directly involved in the generation of these 

rhythms is the observation that PER itself is 
subject to circadian regulation; both per 
protein (PER) (4) and per mRNA (5) un- 
dergo daily fluctuations in the heads of 
adult flies. These two oscillations are con- 
nected, as PER may have a role in the 
circadian regulation of its own transcription 
(5, 6). 

If PER oscillations contribute directly to 
the clock mechanism, transient perturba- 
tions of its level or activity would cause a 
phase shift in the oscillator (Fig. 1A). 
Because identical stimuli applied at differ- 
ent phases in a circadian cycle can give rise 
to shifts with different magnitudes and di- 
rections, PER increases might advance or 
delay the rhythm of locomotor activity in 
an a vriori un~redictable fashion (Fig. 1A). 
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As in previous results (8), some lines were 
rhythmic at 25' or 2g°C, whereas others 
were not (9). We chose one completely 
arrhythmic line (perO';hspc-23a) (1 0) and 
reasoned that in a wild-type strain with this 
insert (perf;hspc-23a), only the perf gene 
should contribute significantly to locomotor 
activity rhythms at 2S°C. Indeed, the 
rhythms of perf ;hspc-23a flies were indistin- 
guishable from those of control wild-type 
flies, including in their periods (I I )  and in 
their phases (9). With this strain, we then 
induced PER at various times throughout a 
circadian cycle and measured the phase of 
the resultant locomotor activity. 

Because temperature pulses elicit phase 
shifts in many organisms (12), we first 
determined the effects of temperature on 
wild-type D. melanogaster locomotor activ- 
ity rhythms. We administered short pulses 
of the heat stimulus throughout the circa- 
dian cycle and determined the magnitude 
and direction of the ensuing phase shift; 
plotting the average phase shift (13) as a 
function of the circadian time of the stim- 
ulus yielded a phase response curve (PRC) 
(Fig. 2A). This heat PRC is similar to 
results obtained with light pulses as the 
stimulus for phase-shifting D. melanogaster 
locomotor activity (1 4). Depending on 
when the temperature pulse was given, the 
activity phase was delayed, advanced, or 
unchanged. Both delays and advances 
reached a new steady state within one 
circadian cycle after treatment with heat . -  . 

Howard Hughes Medical Institute, Department of Bi- T; test this prediction, we generated (9). 
ology, Brandeis University, Waltham, MA 02254. transgenic flies bearing a heat-inducible We applied the identical temperature- 
'Present address: Department of Molecular Biology copy of per, termed hspcper (Fig. 1B) (7). pulse regime to perf ;hspc-23a flies and a 
and Biochemistry' Center for Advanced BiOtechnOl- Several independent lines were obtained, different PRC was generated (Fig. 2, A and 
ogy and Medicine, Rutgers University, Piscataway, NJ 
08854. and we assayed the biological activity of B) . Expression of heat-induced PER (HSP- 
tTo whom correspondence should be addressed, hspcper in a per0' arrhythmic background. PER) converted the phase delay region 

SCIENCE VOL. 263 14 JANUARY 1994 237 



[circadian time 9 to 17 (CT9-17) (Fig. 
ZA)] normally observed in wild-type flies 
into a strong phase-advance zone (Fig. 2B) 
(15). Expression of HSPPER in the normal- 
ly unresponsive zone of wild-type flies 
(CT1-7) (Fig. 2A) produced phase delays 
(Fig. 2B). Although we observed significant 
delays only at CT3 and CT5, induction of 
HSPPER did phase-shift the clock at times 
at which temperature pulses are ineffective 
in wild-type flies. 

Because it is likely that the PRC gen- 
erated for perf;hspc-23a flies (Fig. 2B) 
results from the cumulative effects of both 
temperature and HSPPER, we subtracted 
the values obtained for per+;hspc-23a from 
those for wild-type flies to generate a PRC 
that should better reflect only HSPPER 
(Fig. 2C). Between CT9 and CT17, tran- 
sient increases in HSPPER elicit phase 
advances much larger than those elicited 
by temperature alone (Fig. 2A). Further- 
more, during certain times the clock is 
largely insensitive to increases in HSPPER 
(CT19-01) (Fig. 2C). We cannot elimi- 
nate the possibility that the analysis is 
complicated by synergistic effects (for ex- 
ample, that HSPPER affects the tempera- 
ture sensitivity of the phase-shifting re- 
sponse). Nor is it certain that the two 
effects occur simultaneously or that the 
increase in PER activity is restricted to a 
1-hour time window. Nevertheless, induc- 
tion of HSPPER can advance the phase of 
the clock at times and under conditions 
identical to those that elicit phase delays 
in wild-type flies. 

To test the possibility that gross differ- 
ences in HSPPER induction or stability 
might account for the time-dependent dif- 
ferences in the HSPPER-induced phase 
shifts, we assayed HSPPER with antibodies 
to PER (Fig. 3) (16-18). The induction of 
HSPPER was indistinguishable at all circa- 
dian times. Also, the profiles of appearance 
and disappearance were indistinguishable, 
independent of the circadian time at which 
HSPPER was induced (9). Therefore, be- 
cause the phase shifts are stable even after 
HSPPER is no longer detectable (1 9), the 
PRC (Fig. 2C) likely reflects the temporal 
sensitivity of the clock to the induction of 
HSPPER. 

Although the 1-hour heat pulse gener- 
ates HSPPER in excess of wild-type PER 
(Fig. 3), it is impossible to estimate from 
its biochemical profile the relative levels 
of the biological activity of HSPPER. For 
example, immunohistochemical staining 
ofper+;hspc-23a fly heads after a heat pulse 
of 1 hour at 37OC showed that HSPPER is 
expressed throughout the entire head (9). 
This pattern is very different from the 
highly restricted spatial expression pattern 
observed for wild-type (pert) flies (4). 
Therefore, the protein immunoblot (Fig. 

3) greatly overestimated the amount of 
HSPPER in the very limited number of 
(wild-type) PER-expressing cells. This 
compromises interpretations based solely 
on gross amounts of HSPPER. 

A comparison of the PRCs (Fig. 2, A 
and B) in wild-type and perf ;hspc-23a flies 
raises the intriguing possibility that the 
fluctuations normally observed in PER 
amounts might underlie the fundamental 

light PRC of the wild-type D. melanogaster 
clock. The superposition of a classical light 
PRC and a curve describing the PER fluc- 
tuations (20) reveals that amounts of wild- 
type PER are greatest during the night, 
when phase shifts can be induced, and 
smallest during the middle of the day, when 
the clock is most refractory to phase-shift- 
ing stimuli (Fig. 4). The induction of 
HSPPER during the rise and fall in wild- 
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ATG TAG 
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Phase fiw Fig. 1. Strategy used to investigate whether transient 
perturbations in PER levels can phase-shift a Dro- 

advance sophila circadian clock. (A) The peak of the output is 
arbitrarily defined as occurring at circadian time 24, 

1 and the present status of the clock (time 12) is 
indicated for the unperturbed state (top). A transient 
perturbation in a clock component can elicit a phase 
advance (middle) or a phase delay (bottom). (B) 

Phase 
delay Schematic representation of the hspcpertransforma- 

tion vector (7). The contiguous bars denote the 

1 different fragments used in the construction. The 
open reading frame corresponding to the major form 

of permRNA (23) is indicated by the hatched bar, and relevant restriction endonuclease sites are 
shown. The positions of Nco 1 (2835), Hind 1 1 1  (7212), and Eco RI (9302) are based on the 
sequence in (23). 
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Flg. 2. Comparison of locomotor activity PRCs 
elicited by temperature pulses in wild-type and 
per+;hspc-23a flies. (A) PRC for temperature- 
shifted wild-type flies (13). The average 
change in phase is plotted as a function of the 
circadian time of temperature shift Delays and 
advances are indicated by negative and posi- 
tive numbers, respectively. The standard error 
for each time point is also shown. The shaded 
and black contiguous bars below the PRC 
represent the 12-hour subjective day and 12- 
hour subjective night, respectively. (B) PRC for 
temperature-shifted per+;hspc-23a flies ob- 
tained as in (A). (C) PRC generated by sub- 
tracting values obtained in (B) from those ob- 
tained in (A). Circadian time (hours) 
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type PER amounts causes phase advances 
and delays, respectively. A reasonable sce- 
nario is that a premature increase in PER 

! of heat (C' Time r) iii 
I 1; 
17 q r  q3 23 13 $ 

I I 

Fig. 3. Protein immunoblot of HSPPER in 
per+;hspc-23a flies. Total head extracts were 
prepared from per+;hspc-23a flies (16) that 
either received a 1 -hour heat pulse at 37% and 
then recovered for 4 hours at 25°C (lanes 1 to 5) 
or were not heated and were maintained at 
25°C (lane 6). HSPPER (arrow) was visualized 
by protein immunoblot (17) in the presence of 
PER antibodies (18). Under these conditions, 
only large amounts of HSPPER were detected. 
The circadian time (CT) when the heat pulse 
was initiated is at the top. 

Fig. 4. Model for how the circadian fluctuations 
in PER levels (or activity) might underlie the 
classical D. melanogaster light PRC. Two curves 
are aligned with respect to a 24-hour cycle (top; 
the white and black contiguous bars represent 
the alternating periods of 12-hour day and 12- 
hour night, respectively). The top curve depicts 
the relative fluctuations in wild-type PER levels 
(4, 20). The bottom curve depicts the relative 
light PRC for 0. melanogaster locomotor activity 
rhythms (14). Phase advances (shaded) and 
delays (vertical lines) are indicated to the right. 
ZT, Zeitgeber time. Delays occur when PER is 
accumulating. Advances occur when accumu- 
lation of PER starts to plateau (crossover point) 
and continues throughout its disappearance. 
The unresponsive zone occurs when PER 
amounts are at their lowest. 

leads to a phase advance, whereas a retard- 
ed disappearance (due, for example, to 
induction of HSPPER at a time when the 
concentration of wild-type PER would be 
normally decreasing) leads to a phase delay. 
The use of reversible protein synthesis in- 
hibitors in mollusks revealed a restricted 
time zone in the subjective night that re- 
sults in delays (Zl), which is consistent 
with the view that the temporal synthesis of 
a critical protein or proteins is an integral 
property of circadian clocks. 

Although its function in mediating nor- 
mal phase-shifting responses remains spec- 
ulative, experimental results over the past 
20 years support a fundamental role for the 
per gene in the circadian time-keeping 
mechanism: per mutations effectively elim- 
inate or dramatically alter normal circadian 
rhythms, and amounts of PER undergo 
daily oscillations. Our data strengthen this 
hypothesis. The accumulated evidence 
makes it likely that PER is a component of 
a Drosophila circadian clock. 
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