
adenylyl cyclase (20, 25), the ability to 
activate phospholipase C (25). In sG,, this 
whole region is substituted by a different 
35-amino acid segment. This segment con- 
fers on sGi2 a subcellular localization differ- 
ent from that of Giz. This mechanism 
closely resembles that for localization of 

,members of the Rab family (27), small 
'GTP-binding proteins also implicated in 
intracellular transport. The exchange of the 
COOH-terminal 35 amino acids between 
Rab5 and Rab7, two proteins localized in 
the early and late endosomes, respectively, 
retargets them to the subcellular compart- 
ment associated with the corresponding 
COOH-terminus (2 7). The COOH-termi- 
nus may recognize specific receptors in the 
appropriate compartment. 

The Dresence of the alternative COOH- 
terminal domain in sGi2 may imply the 
existence of organelle-specific receptors in- 
volved in its recognition. The function of 
this protein might be synergistic with that 
of other GTP-binding proteins in the regu- 
lation of membrane transport mechanisms. 
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The Met Proto-Oncogene Mesenchymal to 
Epithelial Cell Conversion 

llan Tsarfaty, Sing Rong, James H. Resau, Shen Rulong, 
Pedro Pinto da Silva, George F. Vande Woude* 

Coexpression of the human Met receptor and its ligand, hepatocyte growth factorlscatter 
factor (HGFISF), in NIH 3T3 fibroblasts causes the cells to become tumorigenic in nude 
mice. The resultant tumors display lumen-like morphology, contain carcinoma-like focal 
areas with intercellular junctions resembling desmosomes, and coexpress epithelial (cy- 
tokeratin) and mesenchymal (vimentin) cytoskeletal markers. The tumor cells also display 
enhanced expression of desmosomal and tight-junction proteins. The apparent mesen- 
chymal to epithelial conversion of the tumor cells mimics the conversion that occurs during 
embryonic kidney development, suggesting that Met-HGFISF signaling plays a role in this 
process as well as in tumors that express both epithelial and mesenchymal markers. 

T h e  met proto-oncogene product (Met) is 
a member of the family of tyrosine kinase 
growth factor receptors (1, 2), and its li- 
gand is hepatocyte growth factorlscatter 
factor (HGFISF) (3-5). HGF/SF mediates 
liver regeneration in vivo (6), induces dif- 
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ferentiation of Madin-Darby canine kidney 
(MDCK) epithelial cells into branching 
tubules (7), and promotes epithelial cell 
motility and invasiveness in vitro (5, 8). 
Two lines of evidence (9) suggest that Met 
is involved in the formation and mainte- 
nance of epithelial lumenal structures: (i) 
Met is expressed in epithelial cells border- 
ing lumenal structures in a variety of tis- 
sues, including cells that border the mam- 

21 702-1 201. mary duct, and (ii) treatment of certain 
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endogenously and become highly tumorigenic 
through an autocrine mechanism when they 
are engineered to overexpress murine Met. 
Likewise, NIH 3T3 cells coexpressing Methu 
and HGF/SFhu [HMH cells (lo)] are highly 
tumorigenic (1 1, 12). Explants of HMH tu- 
mors cultured on glass (10) formed lumenal 
structures (13) (Fig. 1, B and C) that were 
indistinguishable from lumens formed by 
HGF/SFhu-treated epithelial carcinoma cells 
in vitro (9). This result was unexpected be- 
cause lumen formation has not been observed 
with cells of mesenchymal origin. Lumenal 

Fig. 1. Formation of lumen-like structures by 
HMH tumor cells in vitro and in vivo. (A to C) 
Cells were grown to -90% confluence and 
fixed and stained with methylene blue before 
CLSM analyses. Nomarski view of: (A) NIH 3T3 
cells and (B) HMH cells; (C) is a high magnifi- 
cation of (B). Scale bar, 250 km. (D to I) 
Paraffin-embedded sections of HMH and MT 
tumors. Nomarski view of (D) HMH and (G) MT 
sections. (E) HMH and (H) MT sections stained 
with the C28 antibody to Met''"; (F) HMH and ( I )  
MT tumor sections stained with an antibody to 
HGFISF. Note the intense Methu staining around 
the lumenal structures in (E). Magnification, 
x85 in (D) to (F). 

structures were not observed with the parental 
NIH 3T3 cells or with MT cells, a control cell 
line overexpressing the Methu receptor (10) 
(Fig. 1A). The Methu product is not activated 
in MT cells (1 1); however, the treatment of 
MT cells with HGF/SFhU ligand (10 ng/ml) 
induced lumen formation in vitro (14) at a 
much lower frequency than observed with the 
autocrine-stimulated HMH cells. The treat- 
ment of parental NIH 3T3 cells with HGFI 
SFhu did not induce lumen formation (14). 
Epithelial-like morphology has been reported 
for NIH 3T3 cells transfected with methU and 
treated with HGF/SFhu (1 5). 

To determine whether HMH tumors 
form lumens in vivo, we examined the 
tumors by confocal laser-scanning microsco- 
py (CLSM) (16). Lumenal structures were 
observed at high frequency in HMH, but not 
MT, tumors (1 0) (Fig. 1, D and G) or in 
tumors produced by the aberrant expression 
of ras and src (1 4). Both the HMH and MT 
tumor cells stained with an antibody to 
Methu (2, 16) (Fig. 1, E and H), whereas the 
HMH, but not the MT, tumor cells stained 
with an antibody to HGFISF (1 7) (Fig. 1, F 
and I). Toluidine blue-stained sections of 
the HMH tumors (1 8) contained areas with 
a trabecular pattern that was more charac- 
teristic of an epithelial adenocarcinoma 
(Fig. 2A) than of the fibrosarcomas that 
typically develop from oncogene-trans- 
formed NIH 3T3 cells. In each of 10 HMH 
tumors examined, we observed carcinoma- 
like focal areas that displayed typical epithe- 
lioid cell clusters. The autocrine-activated 
Met" tumors also displayed carcinoma-liEe 
areas, but at a lower frequency (14). Metmu 
tumors develop more rapidly than the HMH 
tumors (I I ), and this difference may play a 
role in the conversion to the carcinoma 
morphology. 

Examination of the HMH tumors by 

transmission electron microscopy (TEM) 
(18) revealed that the tumor cells are con- 
nected by junctional complexes resembling 
desmosomes (Fig. 2B). We determined that 
the cells forming desmosomes were derived 
from the HMH tumor, because they were 
positive for Methu expression (Fig. 2B). The 
presence of desmosomes provided further 
evidence that the HMH tumor cells had 
converted to a carcinoma morphology. 

We then tested HMH and MT tumors for 
the expression of two different intermediate 
filament proteins+ytokeratin, an epithe- 
lial-specific protein that is anchored to des- 
mosomes, and vimentin, a mesenchymal- 
specific protein that is normally expressed by 
NIH 3T3 fibroblasts. Cytokeratin was highly 
expressed in the HMH tumors but not in the 
MT control tumors (1 O), whereas vimentin 
was expressed in both HMH and MT tumors 
(Fig. 3A). The HMH tumor stained with 
the C28 antibody to Methu (Fig. 3A), con- 
firming that this tumor arose from HMH 
cells. The frequent formation of lumenal 
structures in the HMH sections was revealed 
in the Nomarski view (Fig. 3A). Both Met 
staining and cytokeratin staining were in- 
tense in the cells bordering the lumen (9); in 
contrast, the vimentin staining did not lo- 
calize to these structures (Fig. 3). In addi- 
tion, the HMH tumors showed markedly 
enhanced expression of proteins involved in 
epithelial intercellular interactions, such as 
the desmosomal proteins, desmoplakin and 
desmoglobin (19); ZO-1, a tight junction 
protein (20); and E-cadherin, an actin cyto- 
skeletal-associated protein (Fig. 3B). The 
expression of these proteins was much lower 
or absent in the MT tumor (Fig. 3B). Both 
HMH and MT tumors expressed high levels 
of Methu (Fig. 3). It has been proposed that 
the same molecular mechanisms that control 
epithelial cell dissociation ("scattering") also 
control lumen formation (9. 21) and that . ,  , 

both these processes may involve actin cyto- 
skeletal and adhesion proteins that shape cell 
morphology and promote intercellular inter- 
actions (21). Our results support this view, in 
that the activation of Met by its ligand in 
mesenchymal cells was shown to induce lu- 
men formation and the expression of E-cad- 
herin, 20-1, and desmosomal proteins. 

The acquisition of epithelial properties 
by the fibroblast-derived HMH cells mimics 
the mesenchymal to epithelial conversion 
of cells during the organogenesis of the 
kidney, ovary, and testis. These differenti- 
ating cells express both vimentin and cy- 
tokeratin during embryonic development 
(22, 23), and Met expression is high in 
both the embryonic and adult kidney (14, 
24). We therefore investigated whether 
Metmu is coex~ressed with vimentin and 
cytokeratin in the developing kidney. Seri- 
al sections of an 11.5-day mouse embryo 
were stained with an antibody to Metmu (9, 
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24) and with antibodies to vimentin or 
cytokeratin before CLSM analysis (25) 
(Fig. 4). The developing kidney coex- 
pressed vimentin, Metmu, and cytokeratins 
(Fig. 4, A to C). In an adjacent region of 
the same embryo section, the vimentin- 
specific antibody stained only the mesen- 
chymal portion of the gastrointestinal tissue 
(Fig. 4A, inset), whereas the cytokeratin- 
specific antibody stained only the epithelial 
cells and not the surrounding mesenchymal 
cells of the gastrointestinal tract (Fig. 4C, 
inset). These results suggest that Met and 
the HGFJSF signal transduction pathway 

Fig. 3. Expression of cytokeratins 
bv HMH tumor cells in vivo. lLll 

are involved in the develo~ment of the 
embryonic kidney. 

In adult tissues, intermediate filament 
proteins are expressed in a cell-type-specific 
manner. The coexpression of cytokeratins 
and vimentin is restricted to early develop- 
ment (26), except in wound healing (27) 
and in certain types of neoplasia (28). It has 
been postulated that in wound healing, the 
cells expressing both intermediate filament 
classes are dedifferentiated e~ithelial cells or 
are derived from mesenchymal cells that are 
converted into tubular epithelial cells (23). 
Our results support the latter hypothesis. We 

~graffin-embedded sections ' df 
HMH tumors were examined by 
CLSM after staining with antibod- 
ies to cytokeratin (1) or vimentin 
(2). MT tumors were similarly 
stained with antibodies to cytoker- 

(5 and 6). ZO-1 (7 and 8), E-cad- 
herin (9 and lo), and Methu (1 1 fi! and 12) (magnification, x95). 

Fig. 4. Met expression during mesenchymal to 
epithelial cell conversion in the developing 
mouse kidney. Paraffin-embedded serial sec- 
tions of 11.5-day embryonic mouse kidneys 
were examined by CLSM for the expression of 
(A) vimentin, (B) murine Metmu, and (C) cyto- 
keratin. The specificity of the vimentin and 
cytokeratin staining is shown in an adjacent 
region of the embryo that specifically express- 
es vimentin [submucosal connective tissue of 
the developing gastrointestinal tract (inset, A)] 
or cytokeratin [lumen of the gastrointestinal 
tract (inset, C)] (magnification, x67). (D) 
Nomarski view of the embryonic kidney. 

I 

propose that the HGFJSF-mediated activa- 
tion of Met in mesenchymal cells at the 
wound site may play a role in converting 
these cells to an epithelial phenotype. 

Cells that coexpress cytokeratin and vi- 
mentin in certain carcinomas are thought to 
originate from epithelial cells that dedifferen- 
tiate and synthesize vimentin or from epithe- 
lial cells that differentiate from a primordial 
mesenchymal cell type (23). Giantcell lung 
carcinomas (29), ductal and mucinous adeno- 
carcinomas of the breast (30), and epithelial 
portions of kidney tumors also express vimen- 
tin (3 1). We propose that the inappropriate 
expression of Met in certain mesenchymal 
cells can lead to a carcinogenic transforma- 
tion in which the tumor cells express both 
mesenchymal and epithelial markers (32). 
Carcinomas that coexpress cytokeratin and 
vimentin may originate by cell conversion, as 
observed in the carcinoma-like region of the 
HMH tumors. However, we cannot exclude 
the possibility that other growth factors and 
receptors are also required for this conversion. 
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