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Location of CAMP-Dependent Protein Kinase Type I 
with the TCR-CD3 Complex 

Bjrarn S. Sk&lhegg,* Kjetil Tasken, Vidar Hansson, 
Henrik S. Huitfeldt, Tore Jahnsen, Tor Lea 

Selective activation of cyclic adenosine 3',5'-monophosphate (CAMP)-dependent protein 
kinase type I (cAKI), but not type II, is sufficient to mediate inhibition of T cell replication 
induced through the antigen-specific T cell receptor-CD3 (TCR-CD3) complex. Immuno- 
cytochemistry and immunoprecipitation studies of the molecular mechanism by which cAKl 
inhibits TCR-CD3-dependent T cell replication demonstrated that regulatory subunit la, 
along with its associated kinase activity, translocated to and interacted with the TCR-CD3 
complex during T cell activation and capping. Regulatory subunit Ila did not. When stim- 
ulated by CAMP, the cAKl localized to the TCR-CD3 complex may release kinase activity 
that, through phosphorylation, might uncouple the TCR-CD3 complex from intracellular 
signaling systems. 

T h e  demonstration of multiple regulatory 
(R) subunits of CAMP-dependent protein 
kinase (cAK) showing cell-specific expres- 
sion and regulation, as well as distinct 
intracellular compartmentalization, gave 
support for the idea that different functions 
of cAMP may be mediated by specific iso- 
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zymes of cAK (1). In human peripheral 
blood T lymphocytes, the cAKI holoen- 
zyme [composed of two RIa subunits and 
two catalytic (C) subunits (RIa,C,)] is 
soluble, whereas cAK. type I1 (cAKII) 
(RIIa,C,) is particulate (2). Furthermore, 
activation of cAKI, but not cAKII, is suf- 
ficient to mediate the inhibitory effect of 
cAMP on TCR-CD3-induced T cell repli- 
cation (2). T o  investigate the possible 
mechanism for cAKI-mediated inhibition 
of TCR-CD3-induced T cell replication, 
we examined the location of cAKI and 
cAKII in quiescent cells and in cells stim- 
ulated through the TCR-CD3 complex. 

The subcellular localization of cAKI and 
cAKII was assessed with antibodies to M a  
(anti-EUa) or RIIa (anti-RIIa) and visual- 
ized by indirect immunofluorescence with 
fluorochrome-labeled secondary antibodies 
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(3). The intracellular distribution of cAKI 
and cAKII was compared with that of the 
TCR-CD3 complex visualized by antibodies 
to the C D ~ E  molecule (anti-CD3). In un- 
capped human T cells, the TCR-CD3 com- 
plex is scattered on the cell surface, al- 
though slight patching is observed (Fig. 
1A). After permeabilization of the cells 
with Triton X-100 (0.5%) and staining 
with anti-RIa and the fluorescein isothio- 
cyanate (F1TC)-labeled secondary anti- 
body, RIa was distributed almost homoge- 
neously in the cell cytoplasm (Fig. 1B). In 
combined images that showed staining for 
both the TCR-CD3 complex and RIa in 
the same cell, it appeared that the distribu- 
tion of these two components was random 
(Fig. 1C). Similar examination of the sub- 
cellular localization of the RIIa subunit in 
uncapped cells revealed that this R subunit 
was localized to one distinct spot in the cell 
(Fig. 1G). When we counterstained with 
7-amino-actinomycin D (red) to visualize 
the nucleus, we found that RIIa was locat- 
ed in close proximity to the cell nucleus. 

Fig. 1. Localization of 
the TCR-CD3 complex, 
Rla ,  and Rlla  in un- 
capped or TCR-CD3- 
capped T cells were 
examined after immu- 
nofluorescence label- 
ing in a confocal immu- 
nofluorescence micro- 
scope. (A) RlTC (red) 
fluorescence of un- 
capped T cells (cells in- 
cubated 60 min at 4°C 
with anti-CD3, 1 : 100 di- 
lution of ascites, in the 
presence of 0.1% sodi- 
um azide). (B) FlTC 
(green) fluorescence of 
the same cell as shown 
in (A) after overnight in- 

! 

The distinct cellular distribution of RIa and 
RIIa supports our other studies that dem- 
onstrated that more than 75% of cAKI 
(RIa) is soluble, whereas 90% of cAKII 
(RIIa) is particulate (2). 

We next examined the localization of 
the TCR-CD3 complex, RIa, and RIIa in 
human T cells after capping of the TCR- 
CD3 complex (4, 5). After 60 min of 
stimulation with anti-CD3 (30 min at 4°C 
and 30 min at 37"C), the TCR-CD3 com- 
plex was either patched or completely 
capped in most of the cells (>go%) (Fig. 
ID). In cells in which the TCR-CD3 com- 
plex was patched, immunoreactive RIa was 
concentrated at the inner surface of the 
plasma membrane. In fully capped cells, the 
RIa subunit completely localized to one 
distinct area of the cell (Fig. 1E). An image 
overlay of the TCR-CD3 complex and RIa 
showed that the two components complete- 
ly co-localized in cells that were fully 
capped (Fig. IF). The specificity of TCR- 
CD3-dependent redistribution of RIa is 
shown by RIIa staining. Activation 

Anti-CD3 
Anti-CD3 Anti-Rla Anti-Rla 

cubation of permeabi- 
lized cells with anti-Rla , uncapped 
(1 : 100 dilution of affini- 
ty-purified mAb). (C) 
lmage overlay of the 
staining patterns de- 
picted in (A) and (B). 
Co-localization of TCR- 
CD3 and R l a  gives a 
yellow fluorescence. 
ID) RlTC fluorescence 

cells (incubated with 
anti-CD3, 1 :I00 dilution 
of ascites, for 30 min at 

Anti-Rlla Anti-Rlla 
Anti-CD3 

4°C and 30 min at 37°C 
in the absence of sodium azide). (E) The same cell as shown in (D) is incubated with anti-Rla and 
FITC-labeled antibody to IgG in the second layer. (F) lmage overlay of the cell depicted in (D) and 
(E). (G) FlTC (green) fluorescence of permeabilized cells incubated with anti-Rlla and counter- 
stained with 7-amino-actinomycin D to visualize the nucleus (red). (H) FlTC fluorescence (green) in 
capped T cells incubated with anti-Rlla and counterstained with 7-amincractinomycin D to visualize 
the nucleus (red). (I) lmage overlay of a capped T cell incubated with anti-Rlla and FITC-labeled 
secondary antibody (green) and with anti-CD3 and RITC-labeled secondary antibody (red). 

through the TCR-CD3 complex was not 
associated with any change in the localiza- 
tion of immunoreactive RIIa (Fig. lH), 
and RIIa did not co-localize with the cap 
(Fig. 11). 

To determine whether the redistribution 
of RIa during T cell activation involves a 
physical interaction with the TCR-CD3 
complex, we immunoprecipitated proteins 
(6) from capped and uncapped T cells with 
anti-CD3, anti-RIa, and an irrelevant 
monoclonal antibody (mAb) of the same 
immunoglobulin G (IgG) subclass (control 
mAb) . The irnmunoprecipitates formed 
were photoaffinity-labeled with 8-azido- 
[32P]cAMP in the absence and presence of 
excess unlabeled CAMP, and we analyzed 
them by SDS-polyacrylamide gel electro- 
phoresis (PAGE) to identify precipitated R 
subunits. The anti-CD3 immunoprecipi- 
tates from capped T cells contained a single 
protein that specifically incorporated 
8-a~ido-[~~P]cAMP (Fig. 2A). This protein 
had an electrophoretic mobility identical to 
that of human RIa (49 kD). In contrast, 
similar immunoprecipitates of lysates from 
uncapped human T cells did not contain 
proteins that specifically incorporated 
8-a~ido-[~~P]cAMP. The anti-RIa also pre- 
cipitated a protein of 49 kD that incorpo- 
rated 8-a~ido-I~~PlcAMP. The control mAb 
did not immunoprecipitate R h .  To assess 
the specificity of the RIa association with 
the TCR-CD3 complex, we left the major 
histocompatibility complex class I (MHC I) 
molecules uncapped or capped and immu- 
noprecipitated them under conditions iden- 
tical to those we used with the TCR-CD3 
complex. In these experiments, co-immu- 
noprecipitation of RIa was not observed 
(Fig. 2B). 

Next we investigated whether the com- 
plete cAKI holoenzyme, and not only R h ,  
was translocated and associated with the 
TCR-CD3 complex in activated cells. Im- 
munoprecipitates similar to those described 
in Fig. 2A were analyzed for specific bind- 
ing of 13H]cAMP and cAK phosphotrans- 
ferase activity. In these experiments, the 
binding activity of R and phosphotransfer- 
ase activity of C were normalized to the 
activities measured in the anti-RIa immu- 
noprecipitates, which were arbitrarily set to 
100%. The anti-CD3 irnmunoprecipitates 
from capped cells contained 70 to 80% of 
the total 13H]cAMP binding and phospho- 
transferase activity found in anti-RIa im- 
munoprecipitates (Fig. 2C). In contrast, 
anti-CD3 irnmunoprecipitates from un- 
capped T cells contained ~ 1 0 %  of the R 
and C activities of that measured in anti- 
RIa irnmunoprecipitates. Further analysis 
of the anti-CD3, anti-RIa, and control 
mAb irnmunoprecipitates by protein immu- 
noblotting showed that anti-CD3 immuno- 
precipitates from capped T cells contained 
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both immunoreactive RIa and C, but not 
RIIa or RIP (Fig. 2D). Complexes immu- 
noprecipitated wi th anti-CD3 from cell ly- 
sates of uncapped cells contained neither 
the RIa nor the C subunit of cAK  (Fig. 
2D). An anti-RIa immunoprecipitate of 
lysates from uncapped T cells contained 
RIa and C (Fig. 2D). Immunoprecipitation 
wi th control rnAb did not  precipitate any of 
the cAK subunits. Finally, a protein immu- 
noblot incubated wi th two different anti- 
bodies to the CD3 molecules (clones 
UCHTl and SpvT3d) demonstrated that 
equal amounts o f  the TCR-CD3 complex 
were precipitated from both capped and 
uncapped cells (7). 

The results described here demonstrate 

the association of a serine-threonine pro- 
tein kinase wi th the TCR-CD3 complex 
and provide evidence for isozyme-specific 
effects of cAK  in T lymphocytes. Further- 
more, TCR-CD3 stimulation i s  associated 
wi th cAMP formation and activation of 
cAK  (8). This suggests that relocalization 
of c A K I  in close proximity to the TCR- 
CD3 complex may establish an inhibitory 
signaling pathway whereby cAMP can con- 
trol TCR-CD3-mediated effects by activa- 
t ion o f  cAKI. Both TCR-CD3-dependent 
activation of protein kinase C (9) and 
phosphorylation o f  phosphoprotein pplOO 
by TCR-CD3-associated protein tyrosine 
kinase (PTK) (1 0) are inhibited by CAMP. 
Furthermore, the human RIa protein (1 1) 

7J 
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A 2 ro 1 5 - 
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Fig. 2. Detection of R and C subunits in anti-CD3 and anti-MHC I irnrnunoprecipitates of uncapped 
and capped T cells and analysis of cAMP binding and phosphotransferase activity. (A) Lane 1, Rla 
labeled with 8-a~ido-[~'P]cAMP in a cell extract from the human neoplastic B cell line (Reh) (14). S, 
standard. Lane 2,8-azid0-[~~P]cAMP labeling of anti-CD3 irnrnunoprecipitate in capped T cells. The 
specificity of 8-azido-CAMP incorporation was assessed by the incubation of anti-CD3 irnrnunopre- 
cipitates with excess unlabeled cAMP (100 times the concentration of labeled CAMP) (lane 3). 
Lanes 4 and 5, 8-a~ido-[~~P]cAMP labeling of anti-CD3 irnmunoprecipitates from uncapped T cells 
in the absence (-) and presence (+) of excess unlabeled CAMP, respectively. Lanes 6 and 7, 
8-azid0-[~~P]cAMP labeling of anti-Rla imrnunoprecipitates in the absence and presence of excess 
unlabeled CAMP, respectively. Lanes 8 and 9. 8-a~ido-[~'P]cAMP labeling of control mAb 
(isotype-matched to UCHT1, IgG1 K) irnrnunoprecipitates in the absence and presence of excess 
unlabeled CAMP, respectively. (B) Analysis of the specificity of Rla association with the TCR-CD3 
complex. Lane 1, expressed human Rla labeled with 8-a~ido-[~~P]cAMP (14). Lanes 2 and 3. 
8-a~ido-[~'P]cAMP labeling of anti-MHC I imrnunoprecipitates from capped T cells in the absence 
(-) and presence (+) of excess unlabeled CAMP. Lanes 4 and 5, 8-a~ido-[~'P]cAMP labeling of 
anti-MHC I irnmunoprecipitates from uncapped T cells in the absence and presence of excess 
CAMP, respectively. Lanes 6 and 7. 8-a~ido-[~~P]cAMP labeling of anti-Rla imrnunoprecipitates in 
the absence and presence of excess unlabeled CAMP, respectively. (C) lrnrnunoprecipitates 
identical to those described in (A) were analyzed for [3H]cAMP binding (solid bars) and cAK 
phosphotransferase activity (open bars). The R and C activities imrnunoprecipitated with anti-CD3 
(of lysates from capped and uncapped cells) and control rnAb are given as percent of activity 
irnrnunoprecipitated with anti-Rla from untreated cells (mean ? SEM; n = 5). (D) Identical 
irnrnunoprecipitates to those described in (A) and (C) were analyzed for content of the cAK subunits 
Rla, RIP, Rlla, and C by protein imrnunoblotting. 

contains a potential tyrosine phosphoryla- 
t ion site (amino acids 13 to 22) (12) and a 
stretch of prolines and uncharged residues 
(amino acids 84 to 92) that resembles se- 
quences shown to bind to SH3 domains 
(13). These are putative sites of interaction 
wi th TCR-CD3-associated molecules that 
contain SH3 domains, such as PTKs p5wn 
and p56"k or phospholipase C type y-1. In 
conclusion, our data suggest a mechanism 
whereby CAMP, through cAKI-dependent 
phosphorylation of the TCR-CD3 complex 
or associated proteins, inhibits antigen- 
stimulated T cell proliferation. 
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A Transforming Growth Factor P Type I Receptor 
That Signals to Activate Gene Expression 

Craig H. Bassing, Jonathan M. Yingling, David J. Howe, 
Tongwen Wang, Wei Wu He, Michael L. Gustafson, 
Paresh Shah, Patricia K. Donahoe, Xiao-Fan Wang* 

Transforming growth factor beta' (TGF-p) is a multifunctional factor that regulates many 
aspects of cellular functions. TGF-p signals through a heteromeric complex of the type I 
and type I1 TGF-p receptors. However, the molecular mechanism of signal transduction by 
this receptor complex remains unresolved. The type I1 receptor belongs to a transmem- 
brane receptor serine-threonine kinase family. A new member of this receptor family (R4) 
was identified and shown to be a functional TGF-p type I receptor on the basis of its ability 
to restore a TGF-p-induced gene response in mutant cell lines lacking endogenous type 
I receptor. Both ligand binding and signaling of the R4 protein were dependent on the 
presence of a functional type I1 receptor. The type I receptor has an intrinsic serine- 
threonine kinase activity, which was essential for signal transduction. 

T h e  transforming growth factor betas 
(TGF-Ps) are a family of multifunctional 
cytokines that regulate many aspects of 
cellular function. includine cell ~rolifera- - 
tion, differentiation, adhesion, and migra- 
tion (1). TGF-P signals through a hetero- 
meric complex between the type I and type 
I1 receptors (2, 3). The type I1 receptor can 
directly bind ligand, but is incapable of 
mediating TGF-P responses in the absence 
of a type I receptor (3, 4). The type I1 
TGF-P receptor has been cloned and is a 
member of the transmembrane receutor ser- 
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ine-threonine kinase family (5).  Recently, 
a murine receptor serine-threonine kinase, 
Tsk 7L, was concluded to be a type I 
receptor for both TGF-P and activin be- 
cause of its biochemical properties (6). 
However, the ability of the Tsk 7L protein 
to mediate biological responses to TGF-P 
was not shown. 

Because the type I1 receptors for both 
TGF-P and activin belong to the same group 
of receptors (7), it was hypothesized that 
there may be a family of such receptors for 
the lieands of the TGF-B su~erfamilv. To - . . 
explore this possibility, we used a polymerase 
chain reaction cloning strategy to isolate 
other members of this receptor family. Four 
putative receptor serine-threonine kinases 
(R1 through R4) were isolated from the 
urogenital ridge of 14.5- to 15-day fetal 

02: i 4 sprague-~awley rats (8) (Fig. 1). Sequence 
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sents the rat homologue of Tsk 7L. Because 
clones R1 through R4 have a high degree of 
sequence similarity, we investigated the func- 
tional properties of all four proteins. 

Mink lung epithelial (MvlLu) cells are 
highly responsive to the effects of TGF-P. 
Through chemical mutagenesis, several 
classes of TGF-p-resistant MvlLu cell lines 
have been generated (4, 9). Mutants of 
MvlLu cells defective in either the type I (R 
mutants) or type I1 (DR mutants) TGF-P 
receptors lack TGF-P-induced gene expres- 
sion and TGF-P-induced growth inhibition 
(3, 4, 9). A TGF-P reporter construct 
(p3TP-Lux) containing a luciferase gene 

TGFP RII 
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Amino acids 565 509 505 503 501 

Fig. 1. Schematic diagram comparing the ami- 
no acid sequences of R1 through R4 to the 
TGF-p type I 1  receptor. The percent amino acid 
similarity of the extracellular and kinase do- 
mains of each clone as compared to the type l l  
receptor sequence is indicated. The sequence 
similarities were generated by the GAP pro- 
gram of the Genetics Computer Group. The 
nucleotide sequence of the R4 clone has been 
deposited to GenBank (accession number 
L26110). The number of amino acids in each 
protein is indicated. 
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