
group making essentially no contribution to 
the total. On the basis of our current under- 
standing, it appears highly likely that the 
ODPs for the HFCs considered here are all 
well below 1 x lo-'. For the key substitute 
HFC-134a, the best estimate of the ODP is 
only 1 x to 2 x lo-'. 

Note added in proof: Since the submission 
of this manuscript, several studies on reac- 
tion 1 (14-1 6),  reaction 2 (14, 15), reac- 
tion 3 (1 7), and reaction 13 (1 7) have been 
published. All of these measurements are in 
agreement with the results reported here. 
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Target of the Transcriptional Activation Function helix or turn o f the  helix-turn-helix DNA 

of Phage A cl Protein binding motif of cI. These residues are on 
the surface of the cI DNA binding domain 
when it is bound to operator DNL (7) and 

Mei Li, Henry Moyle, Miriam M. Susskind* are appropriately pos~t~oned to contact 
FWA polymerase (4). 

Activation of transcrlptlon initiation by the cl protein of phage h is thought to be mediated The region of RNA polymerase that 
by a direct interaction between cl and RNA polymerase at the P,, promoter. Two neg- contacts cI protein was unknown. The ma- 
atively charged amino acid residues in the DNA binding domain of cl play a key role in jor form of Escherlchla coll RNA polymerase 
activation, suggesting that these residues contact RNA polymerase. The subunit of RNA is composed of a core enzyme (azppr )  plus 
polymerase involved was identified by selecting polymerase mutants that restored the the dissoc~able a7%ubun~t, which confers 
activation function of a mutant form of cl protein. Although previous stud~es suggest that promoter specificity. The a7%ubunit is 
several activators Interact with the a subun~t of RNA polymerase, the results here suggest predicted to be close to cI, because a 7 0  

that cl interacts with the a subunit. An arginine to histidine change near the carboxyl recognizes the -35 region of the promoter 
terminus of a specifically suppresses an aspartic acid to asparaglne change in the acti- (8, 9), which overlaps OR2. The a subun~t 
vation region of cl. This findlng supports the direct-contact model and suggests that a IS another likely cand~date to Interact with 
cluster of positively charged residues near the carboxyl terminus of a is the target of the cI, because a apparently interacts w ~ t h  
negatively charged activation reglon of cl. several other activators (1 0). To ~dentify 

whlch subun~t is the target for activation by 
A cI proteln, we generated a mutant form of 
RNA polymerase that allows a cI-pc mutant 

G e n e  expression is frequently regulated by plexes (2-6). Part of the ev~dence for t h ~ s  to actlvate P,,. To obtain this polymerase 
activator proteins that st~mulate the rate of model was the ~sola t~on of a special class of mutant, we constructed a strain carrying two 
transcriptlon lnltlation at speclfic promot- cI mutants, called PC for positive control, P22 prophages integrated in the bactenal 
ers. In many cases, activation is thought to that bind to 0, and repress PR normally, chromosome (Fig. 2). The first prophage (1 1) 
Involve dlrect contact between the activa- but cannot actlvate P,, (3-6). The pc carnes the kan (kanamycin res~stance) gene 
tor and RNA polymerase on the promoter mutations change amino ac~ds in the first a under control of wild-type A Pm. The second 
DNA. Strong evidence for thls model has 
been presented for the cI gene product of 
phage A, which acts as both a repressor and Fig. (A) Organlzatlon Of A PR 

cl b~nd~ng s~tes (open box- - 
activator of transcriptlon (1). In A lysogens, 

es) and promoter elements  OR^ OR2 -35 OR1 -10 1 
c1 protein binds to sltes in the 0, and 0, (Illled boxes) I n  OR re- { 
operators, thereby turning off two major glen l n  l y s o g e n s  c l  

-35 
promoters, PR and P,. At the same time, b~nds 0,i and 0,2 (but -2!--.- 
the cI dimer bound to OR2 turns on tran- not 0,3) represses P, mRNA PRM 

scriptlon of the cI gene from the P,, and activates P,, (B) Pro- B Hel~x Turn Hellx 
promoter (Fig. 1). The c1 d~mer bound to posed lnteractlons be- d o  ~ ~ ( I C O O H  

0,2 IS thought to lnteract directly wlth tween u70 and the promot- 
0437 ~4-40  ~ 5 8 4  ~ 5 8 8  ~ 5 9 6  

FWA polymerase bound to PKv, thereby er  O r  The 
stimulating lsomerization of closed poly- u70 IS al~gned w~th the left- 

ward P,, promoter w~th a 
Y 

+I' merase-promoter complexes to open com- cl dlmer bound to 0,2 Ar- 
rows represent lnteract~ons A -  

T T A G A TI------------------- 
Department of Blologlcal Sclences Unlverslty of between u70 res~dues and d -10 P~~ -35 %? 

Angeles CA 90089-1340 consensus base palrs (8 9 22) (however -31 of P,, IS nonconsensus) or the act~vat~on patch of 
*To whom correspondence should be addressed cl The latter lnteract~on IS presumably wlth the cl monomer at left D Asp Q Gln R Arg T Thr 
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prophage (12) expresses the A cI gene at a low 
level from a weak version of the E. coli lac 
(lactose operon) promoter. These fusions are 
located in a dispensible region of the phage 
genome (Fig. 3); A cI protein does not control 
maintenance of lysogeny by these prophages. 
Because the cI gene carries the pc2 mutation 
(Asp38 to Asn) (4, 5), activation of the 
P,-kan fusion is extremely weak and the 
cells are sensitive to kanamycin. Plasmids 
containing the E. coli rpoA or rpoD gene 
(encoding the a or u70 subunit, respectively) 
were mutagenized by polymerase chain reac- 
tion (PCR) and introduced into the selection 
strain (13). Cells able to grow on plates 
containing kanarnycin were selected. Mutant 
plasmids that increase kanamycin resistance 
were obtained with the use of the a-encoding - 
plasmid, but not the a-encoding plasmid. 

Eight independent mutant plasmids 
were analyzed. Restriction fragment ex- 
change localized the mutations to a 150- 
base pair (bp) segment of *OD downstream 
of a Cla I site (Fig. 2). Sequencing of this 
region revealed that all eight isolates have 
the same G to A transition, changing 
codon 596 from CGC (Arg) to CAC (His). 
We call this mutation *OD-RH596 and the 
mutant protein a70-RH596. 

The effect of the mutant a was measured 
with the use of strains that express the lac2 
(P-galactosidase) gene from A P, (Table 1 

. 
and Fig. 2) (14). In the absence of A cI 
protein, u70-RH596 has no effect on the 
basal level of transcription from P,. The 
mutant a fully restores the ability of cI-pc2 
protein to activate P,,; the mutant poly- 
merase responds to ;he mutant activator 

Table 1. Allele-specific suppression of X cl-pc2 
by a70-RH596. Strains are derivatives of 
MS1868 (20) carrying a PRM-lac8 prophage 
(14) plus either no second prophage or one of 
four Fa,-CIA prophages (12) and an rpoD plas- 
mid. The activity of p-galactosidase was mea- 
sured (21) and normalized to that of the strain 
czirrying the wild-type plasmid and wild-type cl 
(set at 100; corresponds to 255 Miller units). 
The mean and standard deviation of three to six 
measurements are given. 

Relative activity of 
PRM-IacZfusion 

Activator 
protein 

Wild-type Mutant rpoD rpoD 
plasmid* plasmidt 

None 16.4 + 2.6 16.5 + 1.9 
cl (wild-type) (1 00) 53.4 + 3.4 
cl-pcl 

+ Arg) 6.3 + 0.2 6.9 + 0.4 
cl-pc2 

(Asp38 + Asn) 18.5 f 0.2 120 + 2.9 
cl-pc3 

( G I u ~ ~  + Lys) 0.9 f 0.5 1.0 f 0.3 

*pMS1297 (13). tpMS1366 [identical to pMS1297, 
except the small Cla I fragment (Fig. 2) is from one of the 
original rpD-RH596 plasmids]. 

slightly better than wild-type polymerase 
responds to the wild-type activator. In con- 
trast, the mutant a does not respond to the 
cI-pcl (3) or cI-pc3 (4) mutant activators 
and is somewhat defective in responding to 
wild-type cI. Thus, the Arg596 to His 
change in a 7 0  specifically suppresses the 
activation defect caused by the Asp3' to 
Asn change in A cI. This result strongly 
suggests that cI protein activates P, by 
interacting with the COOH-terminus of 
the a 7 0  subunit of RNA polymerase. 

The Arg596 residue is just downstream of 
a outative helix-turn-helix motif of u70 that 
recognizes base pairs in the -35 region of 
promoters (8, 9) (Fig. 1B). The operator 
OR2, centered at -42 with respect to P,, 
overlaps the -35 region. Consequently, 
when RNA polymerase binds to the P, 
promoter, Arg596 of u70 is expected to be 
close to the cI dimer bound to OR2, which 
mediates positive control. Thus, although 
the suooressor mutation was not directed to 

& & 

this (or any) particular region of *OD, the 
location of the mutant residue agrees with ' 

the independently derived alignment of u70 

with respect to the promoter. Because 
Ptashne and co-workers predicted that a 
basic patch on RNA polymerase contacts 
the acidic activation patch of cI (4, 6), it is 
also fitting that Arg596 of u70 is basic and 

lies in a region rich in basic residues. 
The rpoD-RH596 allele was previously 

isolated as a mutation affecting regulation 
of the E. coli araBAD (arabinose) operon 
(1 5, 16). Maximal expression from the araB 
promoter normally requires two activators, 
CAP (catabolite activator protein) and 
AraC. Because CAP is active only when 
bound to adenosine 3',5'-monophosphate 
(CAMP), strains defective in adenylate cy- 
clase (cya gene product) are deficient in ara 
gene expression. The *OD-RH596 muta- 
tion was obtained as a suppressor that re- 
verses the Ara- phenotype of cya- mu- 
tants. This effect requires an intact araC 
gene, suggesting that the mutant a en- 
hances the ability of AraC protein to acti- 
vate the araB promoter without assistance 
from CAP-CAMP (1 6). 

Here we report a polymerase mutant 
that suppresses the activation defect of a 
mutant activator. Previously, most genetic 
studies of oolvmerase-activator interactions 

& ,  

involved the isolation of polymerase mu- 
tants that fail to res~ond to one or more 
wild-type activators. In most cases, such 
mutants have amino acid substitutions or 
deletions in the COOH-terminal half of the 
a subunit (1 0). With the exception of the 
ara studies. the onlv ~ublished evidence 

1 .  

implicating a 7 0  in positive control is the 

Fig. 2. Selection and analysis of 
a70 mutants. A P22 prophage in- - 
tegrated at the X attachment site ' I a s m i d  I 
produces low levels of X cl-pc2 x 
protein from a weak version of the 
lac promoter. Mutant u70 (u*), 
produced by a derivative of plas- 
mid pMS1297 (drawn to scale) 
(13), allows the mutant activator 
to activate the X P,, promoter, 
which controls the kan or IacZ Chromosome 
gene on a second prophage inte- DC 

grated at the P22 attachment site. 
The kan fusion is used to select 

I I I r - 
I 

anz2 prophage an"rophage 

mutants by demanding increased kanamycin resistance. The IacZfusion is used to analyze mutants 
by measuring p-galactosidase amounts. No Lac repressor is present. Bent arrows represent 
promoters; arrowheads represent primers used for PCR mutagenesis (13). C, Cla I; X, Xba I. 

. . .  
E 1 j 

I S a c  I' ,,-' 

PRM-c/A 

Fig. 3. Map of P22 substitutions. 
All Eco RI sites are shown; other- 
wise, only relevant sites are 
shown: A, Acc I; B, Bbs I; C, Cla I; 
E, Eco RI; H, Bam HI; M, Mlu I; 
Ma, Mam I; N, Nru I; P, Hpa I; S, 
Sau 3AI; T, Taq I; and X, Xho I. 
Sites in parentheses were de- 
stroyed in the final constructs. 
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recent demonstration that two rpoD muta- 
tions ( G ~ u ~ ~ ~  to Lys and Asps7' to Gly) 
prevent activation of several E. cob operons by 
wild-type PhoB (1 7) .  However, those rpoD 
mutations can also affect promoter recogni- 
tion directly, because they enhance recogni- 
tion of the wild-type lac promoter in the 
absence of CAP-CAMP (1 8). The G ~ u ~ ~ ~  to 
'Lys mutant also raises the activities of several 
mutants in the lac promoter (?CAP-CAMP) 
and P22 ant promoter (which has no activa- 
tor) (8). In contrast, the Arg596 to His mutant 
has no effect on the activities of 20 PI,, 
alleles (*CAP-CAMP) and 18 Pa,, alleles 
(8). Thus, all known properties of a70- 

RH596 indicate that it does not affect pro- 
moter recognition directly but affects posi- 
tive control by X cI and AraC. It is likely 
that further evidence for the role of a70 in 
positive control will be forthcoming (1 9). 
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Catalytic Activity of an RNA Domain Derived 
from the U6-U4 RNA Complex 

Jing-Hua Yang, Robert Cedergren, Bernardo Nadal-Ginardf 
U6 RNA contains two regions that are essential for proper splicing of nuclear precursor 
messenger RNA (pre-mRNA). Acomparison of putative secondary structures of the U6-U4 
RNA complexes from different phyla revealed a conserved domain that is similar to the 
catalytic hammerhead RNA motif. Although no catalytic activity was detected in the mam- 
malian U6-U4 RNA complexes, two nucleotide changes in U6 RNA and one in U4 RNA 
conferred cleavage activity to the complex. Furthermore, the highly conserved domain of 
the wild-type complex, without the accompanying flanking regions, cleaved an RNA sub- 
strate and exhibited other characteristics of the hammerhead ribozyme. The possible 
involvement of this structure in pre-mRNA splicing is also discussed. 

T h e  splicing of nuclear pre-mRNA is a highly conserved sequences, higher order 
complex process involving both proteins structures, or both, has led to speculation 
and small nuclear RNAs (snRNAs) in a that pre-mRNA splicing may have originat- 
multimolecular structure called the spliceo- ed from, or may still rely on, catalytic 
some. The requirement for RNAs with properties of RNA. The lariat intermedi- 

ates in vre-mRNA splicing and in the 

J,.H, Yang and B, Nadal-Ginard, Howard Hughes self-s~licLg group I1 introns-have fostered 
Medical Institute, Laboratory of Molecular and Cellular these notions because if these intermediates 
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Physiology, Haward Medical School, Department of pre-mRNA splicing should be based on Cardiology, Children's Hospital, Boston, MA 021 15. 
R. Cedergren, Departement de Biochimie, Universite RNA chemistry despite the requirement for 
de Montreal, Montreal H3C 3J7, Canada. protein factors (1, 2). 
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