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Elements of the Yeast Pheromone 
Response Pathway Required for 
Filamentous Growth of Diploids 

Haoping Liu, Cora Ann Styles, Gerald R. Fink* 
Transmission of an external signal from receptors to downstream targets is often mediated 
by a conserved set of protein kinases that act in sequence (a kinase cascade). In haploid 
strains of Saccharomyces cerevisiae, a signal initiated by peptide pheromones is trans- 
mitted through this kinase cascade to a transcription factor STE12, which is required for 
the expression of many mating-specific genes. Here it was shown that in diploids some of 
the same kinases and STE12 are required for filamentous growth, but the pheromone 
receptors and guanosine triphosphate-binding protein are not required for filament for-. 
mation. Thus, a similar kinase cascade is activated by different signals in haploids and 
diploids and mediates different developmental outcomes in the two cell types. 

I n  haploid cells of the fungus S. cereuisiae, mating type (a-factor to STE2 in MATa 
extracellular peptide pheromones control cells and a-factor to STE3 in MATa cells) 
the switch from vegetative growth to the and thereby induces a sequence of events- 
sexual cycle. Each cell type secretes a arrest of cell division in GI ,  formation of 
unique pheromone (a cells secrete a-factor projections, agglutination of two cells of 
and a cells a-factor) that binds a cell opposite mating type, and cell fusion-that 
type-specific receptor on cells of opposite culminate in nuclear fusion (1). The signal 

initiated bv the bindine of b her om one to its " .  
Whitehead Institute for Biomedical Research, Massa- "ceptor (jig. I)  is transmitted a heterO- 
chusetts Institute of Technology, Cambridge, MA trimeric guanosine triphos~hate-binding 
02142. protein (G protein) encoded by GPAI, 
*To whom correspondence should be addressed. STE4, and STEl8 (2) to an ensemble of 
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protein kinases encoded by STEZO, STEl I, 
STE7, and FUS3lKSS 1 (3-8) that appear to 
function in series to activate STE12, a 
transcription factor (9) required for the 
expression of mating-specific genes. 

This kinase cascade is a conserved signal 
transduction module in eukaryotic orga- 
nisms (1 0). The kinases from Saccharmy- 
ces, STE11, STE7, and FUS3, are structur- 
ally and functionally related to those of an 
evolutionarily distant fungus, Schizosaccha- 
rumyces pumbe, byr2, byrl, and spkl, re- 
spectively (1 1 ). In Saccharomyces the genes 
in this signal transduction pathway fall into 
two groups with respect to their expression 
in haploids and diploids. The first group is 
transcribed in haploid cells but not in dip- 
loid cells. This group includes the genes 
encoding the pheromones (MFal, MFa2, 
MFal,  and M F d ) ,  the receptors (STEZ 
and STE3), all three G protein subunits 
(GPA I ,  STE4, and STE 18), and mitogen- 
activated protein (MAP) kinase (FUS3) (2, 
7, 12). The failure of these proteins with 
mating-specific functions to be expressed in 
diploids is not surprising because MATaI 
MATa diploids do not mate. The second 
group, the genes encoding other protein 
kinases of the cascade (STEZO, STEl I, and 
STE7) as well as the gene encoding the 
transcriptional activator STEl2 are tran- 
scribed in both haploids and diploids (3, 4, 
9, 13). These protein kinases might be 
required for signal transduction in another 
developmental event carried out by dip- 
loids. However, no phenotype has been 
observed in diploid strains homozygous for 
deletions of these genes. 

Mating 
pathway 
Hapbids 

Peptide a-factor or a-factor 
pheromone: * 
Receptor: STE2 or STE3 + 
G Protein:GPA 1 STE4 STElB 

t 
STE20 

ST t 11 * 
STET + 

Pseudohy phal 
pathway 
Dipbids 

STE20 

t 
STE11 

t 
MEK STET 

t 
FUS3 br KSSl MAP Klnase * 

STF12 ST i 12 
I 

1 I 

i 
Matimgspedfii 

i 
Filamentous 

transcription growlh 

Fig. 1. Elements of the signal transduction 
pathway required in mating and filament forma- 
tion. The genes in bold type are transcribed in 
both haploids and diploids. The genes in italics 
are expressed only in haploids. It is not known 
whether the downstream targets of STE12 have 
a direct or indirect effect on pseudohyphal 
growth. 

Saccharumyces cerevisiae is dimorphic, 
capable of growing as ellipsoidal yeast cells 
or as filaments (1 4, 15). On medium con- 
taining a low concentration of nitrogen, an 
elliptical yeast cell can undergo an asym- 
metric cell division to produce a long thin 
daughter cell. These long daughters pro- 
duce a new long daughter on the end 
opposite the previous mother-daughter 
junction. The mother and daughter cells 
remain attached, so reiteration of this uni- 
polar division pattern produces a filament 
composed of linear chains of elongated cells 
(a pseudohypha). The yeast form produces 
colonies on the surface of an agar plate, 
whereas the pseudohyphae can penetrate 
beneath the surface. 

The existence of this developmental 
pathway specific to diploid cells raises the 
possibility that some elements of the mating 
signal transduction pathway may be re- 
quired to signal the switch from ellipsoidal 
cells to long, thin pseudohyphal cells. 
Therefore, we created Ste- null mutations 
in diploid strains from the C.1278 back- 
ground (1 6). The signal transduction genes 
fell into two groups on the basis of the 
effects of the mutants on pseudohyphal 
formation. Mutations in the STE2, STE3, 
STE4, STE18, KSS I, and FUS3 genes had 
no discernible effect on ~seudohv~hal  for- 
mation; the abundanc: and lingth of 
pseudohyphae were indistinguishable from 
those in wild-type controls (Fig. 2, A 
through E, J, and K). By contrast, muta- 
tions in STEZO. STEl I .  STE7. and STEl2 
suppressed forkation of pseudohyphae (Fig. 
2, F through I) (1 7) and invasion into the 
agar. Northern (RNA) blot analysis showed 
that the general features of transcription 
previously established for genes of the signal 
transduction pathway in ellipsoidal diploid 

Fig. 2. Suppression of filamentous 
grovdh by mutations in genes en- 
coding proteins of the mating ki- 
nase cascade. The strains were 

cells were retained in pseudohyphal cells 
(Fig. 3). Those genes that were not tran- 
scribed in cells grown in standard medium 
(such as STE2 and FUS3) were also not 
expressed in cells grown in medium con- 
taining low concentrations of ammonia. 
But STEZO, STEII, STE7, and STElZ 
were transcribed in both standard and low 
ammonium medium. The pseudohyphal 
phenotypes caused by mutations in genes 
from each of the two groups are congruent 
with the expression patterns of the genes: 
Mutations in genes that are expressed in 
diploids (except for KSSI, discussed below) 
blocked pseudohyphal formation, whereas 
mutations in genes that are not expressed 
had no effect. This correspondence suggests 
that elements of the signal transduction 
pathway are required for pseudohyphal 
growth. This conclusion is strengthened by 
the fact that null alleles of STEZO, STEl I ,  
STE7, and STEl2 have no phenotype in 
diploids growing on medium with high 
concentrations of ammonia. 

The pseudohyphal phenotype of these 
ste mutants contrasts with that of mutations 
in BUD1 (18, 19), which result in a ran- 
dom budding pattern (15). The bud1 dip- 
loid forms long cells, but fails to form 
pseudohyphae because the random budding 
pattern interrupts the sequence of unidirec- 
tional extensions required for filament for- 
mation. However, microscopic analysis of 
dividing cells from stelste diploid strains 
homozygous for deletions of ste20, stel 1, 
ste7, or stel2 showed that they have the 
same polar budding pattern as the STE 
controls. Therefore, these ste mutations do 
not affect the polar budding pattern of 
diploids but fail to form the cell type nec- 
essary for filament formation. 

Neither of the putative MAP kinase 

constructed from 10480-5C and 
10480-5D n the 21278 back- 
ground (30) W~ld-type STEGTE 
and mutant ste/ste dmlo~ds were I 
streaked on synthetic ldw-ammonia 
dextrose (SLAD) medium (15), and 
the resulting colonies were photo- 
graphed after 3 days of growth at 
30°C. (A) STUSTE (L5366), (B) 
steZ/steZ (HLY353), (C) ste3/ste3 
(HLY509), (0) ste4/ste4 ( H  LY399), 
(E) ste18/ste78 (HLY463), (F) 
steZO/steO (HLY492) (G) s t  1 -c, rl) 
stel 1 (HLY506). (HI ste7/ste7 
( H L Y ~ ~ ; ) ,  (I) ste 72/s't&2 (HLY352). (J) fus3/fus3 (HLY398). (K) kss 1/kss 1 (HLY349), and (L) fus3/fus3 
kssl/kssl (HLY477). Every diploid contained a vector carrying a URA3 gene to complement the ura3 
auxotrophy of the strain. This plasmid was required for growth without supplementation because uracil 
and some other amino acids affect the extent of filament formation. The extent of suppression varies with 
time and with the individual mutant (1 7). Strains carrylng a null allele of KSSl (either kssl or fus3 kssl) 
have a slightly different pattern of pseudohyphal formation from wild-type strains. 
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homologs from Saccharumyces, FUS3 or 
KSS1, appear to be required for pseudohy- 
phal formation. In haploid cells FUS3 and 
KSSJ are redundant; fus3 or kssl single 
mutants are fertile, but the fus3 kssl double 
mutant is sterile. However, in diploid cells 
the fus3, kss J , and fus3 kss J strains were all 
capable of forming pseudohyphae (Fig. 3, J 
through L). The failure of kss J mutants to 
affect pseudohyphal formation could be ex- 
plained if there were another MAP kinase- 
like gene, as yet unidentified, whose prod- 
uct transduced the signal from STE7 to 
STEl2 to stimulate pseudohyphal growth. 
Such a gene might be redundant with KSSl 
in diploids just as FUS3 is redundant with 
KSSl in the haploid mating pathway (20). 
This hypothetical gene is unlikely to be 

Fig. 3. Northern 1 2 3 4 
(RNA) analysis of STE 
gene transcripts in ni- (). 
trogen-starved dip- 
loid cells MATa hap- . @ F U S 3  
loid cells (HLY333) 
were grown to early b - S T E 2 0  

logarithmic phase in I a S T E l 1  
yeast extract (1 %), 
Dewtone (2%). and Od@ STE7 
dextrose (2%) medi- 
um (YPD), and half of 
the cells were collect- 

) - S T E 1 2  

ACTl 

ed, resuspended in 
fresh YPD medium at pH 4 containing a-factor 
(5 pM), and incubated at 30°C for 2 hours. 
Diploid cells (HLY444) were grown either in 
synthetic complete (SC) medium (15) or SLAD 
medium. Total RNAs were extracted from these 
cells and 10 kg of each was loaded in the gel. 
1, MATa cells; 2, a-factor-treated MATa cells; 
3, diploid cells grown in SC; and 4, diploid cells 
grown in SLAD. Each filter was probed with 
labeled DNA from STE2, FUS3, STE20, STEl1, 
STE7, STE12, or ACTl (actin). 

functional in the haploid mating pathway 
because a fus3 kss J double mutant is sterile. 

Dominant gain of function mutants in 
STE J I and overexpression of STE J 2 have 
been used to order steps in the signal 
transduction pathway (2 1-23). STE I 1-4 
and overexpression of STEJ2 led to en- 
hanced pseudohyphal growth in wild type 
(Fig. 4, A through C). Experiments with 
double mutants indicate that the kinases we 
have identified as necessary for pseudohy- 
phal growth can be roughly ordered in a 
pathway. STEJ 1-4 bypassed ste20 but not 
the ste7 or steJ2 mutations for pseudohy- 
phal growth (Fig. 4, E, H, and K). These 
data suggest that STEll  acts downstream of 
STE2O and upstream of STE7. Overexpres- 
sion of STEJ2 appeared to bypass ste20, 
ste7, and steJ2 mutations, indicating that 
STEl2 acts downstream of STE7 (Fig. 4, F, 
I, and L). Thus, the order of steps in the 
pseudohyphal pathway appears to be similar 
to that deduced for the mating pathway 
(Fig. I). 

Although this kinase cascade is con- 
served in several fungi, the mode of activa- 
tion of the cascade differs among them. In 
Saccharomyces the signal for activation of 
mating functions originates with the bind- 
ing of the peptide pheromones to the recep- 
tor; however, the pheromones and recep- 
tors are not required for the induction of 
filaments. In Ustilago maydis, the mating 
pheromone and receptor (encoded by the a 
locus) seem to be required for filamentous 
growth in diploids and dikaryons (24-27). 
The pheromone may act through its recep- 
tor in an autocrine manner to stimulate 
cells to form filaments. Because the phero- 
mones and receptors are not elements of the 
signal transduction cascade for filament for- 
mation in Saccharumyces, this organism 
must utilize other molecules to generate the 

rant and' STE12 overexpression. 
(A throuah C) STE/STE diwloids 
i~5366) containing, respedtivelY. 
a vector. STEl1-4. or GAL-STE12. 
(D through F) ste20/ste20 dip- 
loids (HLY492) carrying, respec- 
tively, a vector, STEl1-4, or GAL- 
STE12 (G through I) ste7/ste7 
diploids (HLY351) carrying, re- 
spectively, a vector, STE11-4, or 
GAL-STEI2 (J through L) stel2/ 
stel2 di~loids (HLY352) carrvina. 
re spec tile^^, a' vector,' STEI 1-21 
or GAL-STE12. Strains carrying 
the vector or STEI 1-4 were 
streaked for single cells on SLAD 
medium; cells carrying GAL-STE12 were streaked on synthetic low-ammonia medium conta~n~ng 
2% galactose (G) and 0.13% glucose (D) (SLAGD). Overexpression of the GAL-STE12construct on 
SLAG (SLAGD without glucose) is lethal. The resulting colonies were photographed after 3-days 
growth at 30°C. The photographs of the GAL-STE12 colonies were enlarged about x1.5 as 
compared with the others. 

signals carried by the kinase cascade. 
The finding that the kinase cascade from 

the mating signal transduction pathway is 
required for pseudohyphal growth provides 
a clear rationale for the expression of these 
genes in Saccharumyces diploids (28) and 
shows that this signaling pathway can me- 
diate two different input signals in the same 
organism. These results parallel those for 
animal cells where the MAP kinase path- 
way has been shown to connect a great 
variety of external signals with proliferative 
or differentiative responses. Of course, in 
yeast it is possible that the STE gene prod- 
ucts affect pseudohyphal growth indirectly. 
Nevertheless, the target of this kinase cas- 
cade in both morphogenetic pathways is the 
same transcription factor, STE12. Al- 
though STEl2 was thought only to func- 
tion during mating (29, 30), our data show 
that STEl2 also functions in vegetative 
cells. Because some of the genes activated 
by STEl2 for mating are not expressed in 
diploid cells (such as FUSJ and FUS2) 
(3 J), there may be genes uniquely required 
for the formation of filaments that are 
activated by STEl2 during vegetative 
growth. 
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Mutations That Allow Disulfide Bond Formation 
in the Cytoplasm of Escherichia coli 

Alan I. Derman, William A. Prinz, Dominique Belin, 
Jon Beckwith* 

Disulfide bonds are rarely found in cytoplasmic proteins. Mutations were selected for in 
Escherichia coli that allow disulfide bond formation in the cytoplasm. In the presence of 
these mutations, export-defective versions of alkaline phosphatase and mouse urokinase 
were able to fold into their enzymatically active conformations in the cytoplasm because 
their disulfide bonds were formed. The mutations were mapped to the gene for thioredoxin 
reductase and diminish or eliminate the activity of this enzyme. Thioredoxin itself was found 
to be unnecessary for this disulfide bond formation. Thioredoxin reductase, but not thio- 
redoxin, is thus implicated in keeping cysteines reduced in cytoplasmic proteins. 

Disulfide bonds are imvortant for the fold- 
ing and structure of many proteins (I) ,  
most of which are ex~orted from the cvto- 
plasm (2). The cytoplasmic proteins that do 
have disulfide bonds are typically sulfhydryl 
oxidoreductases, which undergo redox in- 
terconversion between free sulfhydryl and 
disulfide-bonded conformations (3). The 
absence from the cytoplasm of proteins with 
stable disulfide bonds and their presence 
among exported proteins is generally attrib- 

A. I. Derman, W. A. Prinz, J. Beckwith, Department of 
Microbiology and Molecular Genetics, Harvard Medi- 
cal School; Boston, MA 021 15. 
D. Belin, Departement de Pathologie, Centre Medical 
Universitaire, Geneva, Switzerland. 

*To whom correspondence should be addressed. 

uted to the differing reducing environments 
of subcellular compartments (4, 5). The 
reducing potential of the cytoplasm is sub- 
stantially greater than that of the lumen of 
the endoplasmic reticulum or the extracel- 
lular environment (5). Indeed, the forma- 
tion of disulfide bonds in exported proteins 
occurs only during or after their export from 
the cytoplasm (6, 7). However, an oxidiz- 
ing environment is not itself sufficient for 
the formation of disulfide bonds in exported 
proteins. A system consisting of at least two 
cellular envelope proteins, DsbA and 
DsbB. is necessarv for the formation of 
disulfide bonds in exported proteins in E. 
coli (8). 

With this background in mind, one can 

imagine two possible explanations for the 
scarcitv of disulfide bonds in cvtovlasmic 

? .  

proteins. The absence from the cytoplasm 
of a system such as the Dsb proteins may 
suffice to explain the fact that disulfide 
bonds are rarely found in cytoplasmic pro- 
teins. Alternatively, or in addition, a 
mechanism may exist that actively prevents 
the formation of disulfide bonds in the 
cytoplasm. We have taken a genetic ap- 
 roach in order to assess these vossible 
explanations. We have obtained mutants of 
E. coli that allow the formation of disulfide 
bonds in the cytoplasm. That we have been 
able to obtain these mutants argues for the 
existence of a mechanism that activelv 
prevents the formation of disulfide bonds in 
the cvto~lasm. Characterization of these , . 
mutants provides insight into how disulfide 
bond formation is ordinarily prevented in 
the cytoplasm. 

We have carried out a genetic selection 
for mutants in which disulfide bonds are 
formed in a protein localized to the cyto- 
plasm. Alkaline phosphatase (AP), a non- 
specific phosphomonoesterase, is normally 
found in the E. coli periplasm ( 9 ) .  AP has 
two intrachain disulfide bonds that are re- 
quired for its native structure (10) and 
therefore for its enzymatic activity (I I). 
However, when AP is retained in the cyto- 
plasm, as when expressed without its signal 
sequence, its disulfide bonds are not formed 
(6. 12). The inabilitv of these disulfide 
bonds 'to be formed 'is the most likely 
explanation for the finding that AP is en- 
zymatically inactive when retained in the 
cytoplasm (6, 13). Selection for mutants in 
which AP that is localized to the cytoplasm 
acquires enzymatic activity is therefore 
equivalent to selection for the formation of 
disulfide bonds in the cytoplasm. 

We reauired that AP substitute for a 
phosphomonoesterase that is normally pre- 
sent in the cytoplasm and whose activity is 
required for a particular metabolic function. 
Fructose-1,6-bisphosphatase is a phospho- 
monoesterase that is required for growth of 
E. coli on gluconeogenic carbon sources 
such as glycerol (14). If in a mutant lacking 
fructose-l,6-bisphosphatase (fbp-), AP 
were able to acquire enzymatic activity in 
the cytoplasm, AP could substitute for fruc- 
tose- l,6-bisphosphatase and restore growth 
on glycerol (1 5). 

We constructed a strain that carries a 
deletion in the jbp gene (1 6) and expresses 
AP without its signal sequence under con- 
trol of the tac promoter (12). We isolated 
10 independent spontaneous mutants of 
this strain that were able to grow on glyc- 
erol (Glyc+) at 37OC only if expression of 
the sienal-seauenceless AP was induced " 
with isopropyl thio-P-D-galactopyranoside 
(IPTG) . These mutants satisfied another 
selection for active cytoplasmic AP as well. 

1744 SCIENCE VOL. 262 10 DECEMBER 1993 




