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Activation of Exocytosis by the Heterotrimeric 
G Protein G,, 

Meir Aridor, Gladys Rajmilevich, Michael A. Beaven, 
Ronit Sagi-Eisenberg*-/- 

Secretagogues of rat peritoneal mast cells, such as mastoparan and compound 48/80, 
induce mast cell exocytosis by activating directly the guanosine triphosphate-binding 
proteins that are required for exocytosis. The introduction of a synthetic peptide that 
corresponds to the carboxyl-terminal end sequence of Ga, into the cells specifically 
blocked this secretion. Similar results were obtained when antibodies to this peptide were 
introduced. The Ga,, was located in both the Golgi and the plasma membrane, but only 
the latter source of Gai3 appeared to be essential for secretion. These results indicate that 
Gai3 functions to control regulated exocytosis in mast cells. 

T h e  nonhydrolyzable analog of guanosine 
triphosphate (GTP), guanosine 5'-0-(3- 
thiotriphosphate) (GTP-y-S) , when intro- 
duced into patch-clamped (1) or strepto- 
lysin 0 (SL0)-permeabilized mast cells (2, 
3), stimulates exocytosis independently of 
phospholipase C (PLC) . This suggests that 
a GTP-binding protein, designated G,, 
may act downstream of PLC in the control 
of regulated secretion (4). However, where- 
as both small GTP-binding proteins of the 
Ras (5) and Rab (6) families as well as 
heterotrimeric G proteins (7) have been 
implicated in exocytosis, the identity of G, 

has remained obscure. Certain oositivelv 
charged secretagogues of rat peritoneal mast 
cells, including mastoparan (8 ) ,  substance 
P ( 9 ) ,  compound 48/80 (7), neomycin 
(1 O), and a variety of kinins (I I ) ,  induce 
exocytosis in a receptor-independent man- 
ner by interacting directly with heterotri- 
meric G oroteins. Although thev activate - 
phosphoinositide metabolism, these secret- 
agogues can also induce exocytosis indepen- 
dently of PLC, presumably by directly acti- 
vating GE (1 0). The finding that treatment 
with pertussis toxin (Ptx) inhibits exocyto- 
sis under these conditions indicated that G, - 
is a Ptx-sensitive heterotrimeric G protein 

M. Aridor, G. Rajmilevich, R. Sagi-Eisenberg, The (10). Therefore, we analyzed the Ptx-sen- 
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8 M urea, a condition that allows the 
separation of various a subunits of G pro- 
teins (1 2). Both methods revealed the pres- 
ence of two Ptx substrates (Fig. 1A). These 
two substrates were identified by immuno- 
blot analysis as G q 2  and G g  (Fig. 1B). 
Neither G q 1  nor Gao could be detected in 
mast cells, whereas they were clearly de- 
tected in rat brain membranes (Fig. 1B). 

Activation of G proteins by the positive- 
ly charged secretagogues requires the inser- 
tion of the hydrophobic moiety of the 
activating molecule [a helices of the pep- 
tides (13) or the aromatic rings of com- 
pound 48/80 (14)] into the membrane and 
the interaction of the positively charged 
domain of the molecule with the COOH- 
terminus of the G protein a subunit (13, 
15). This interaction facilitates nucleotide 
exchange, by a mechanism analogous to 
that of G protein-coupled receptors. 
Therefore, to determine whether G q z  or 
G g  fulfills the function of GE, we intro- 
duced synthetic peptides that correspond to 
either the COOH-terminal sequences of a 
subunits or antibodies to these peptides into 
permeabilized cells. Such peptides or anti- 
bodies prevent coupling of G proteins to 
their respective receptors (1 6-1 9). 

The effects of COOH-terminal peptides 
from G q z  or G% on mast cell exocytosis 
were tested. We used the free-acid form of 
adenosine tiiphosphate (ATP), ATP4-, as 
the permeabilizing ligand because this tech- 
nique allows the reversible permeabilization 
of the cells without loss of their responsive- 
ness to external agonists (20). Permeabi- 
lized cells were exposed to various concen- 
trations of the synthetic peptides KE and 
EC (2 I), resealed by the addition of MgZ+ 
(20), and stimulated with 48/80 in the 
absence of external CaZ+. The KE peptide 
at concentrations of up to 100 pg/ml had 
no effect on histamine secretion induced by 
48/80 (Fig. 2A). In contrast, the EC pep- 
tide inhibited secretion, with 50% inhibi- 
tion at 80 p.g/ml and maximal inhibition at 
200 p.g/ml. Both peptides inhibited release 
when introduced at concentrations greater 
than 200 pg/ml(22); at these high concen- 
trations specificity may be lost because of 
the 70% identity between these peptides. 
An irrelevant peptide of a similar size 
(CPAGILNKLV) did not inhibit secretion 
at a similar range of concentrations (22). 

The EC peptide was ineffective when 
added to intact cells (22), indicating that 
the target for the peptide was intracellular. 
Moreover, the EC peptide appeared to act 
by direct competition with the G, protein 
in permeabilized mast cells exposed to both 
EC and neomycin (1 mM) to block phos- 
phoinositide metabolism (7). Although 
neomycin by itself did not trigger exocyto- 
sis, the application of 48/80 to the cells 
containing neomycin induced histamine se- 

Fig. 1. Analysis of Ptx substrates in mast cells. I - .  .- - . 11 a b c d  
(A) Purified mast cells (7) were solubilized in a 

A97 '- lysis buffer containing 1 % Triton X-100. The 68 - 971 

soluble mast cell proteins were subjected to 4 3 .  
ADP-ribosylation in the absence or presence of c. , :;I - 
Ptx (7). On separation by two-dimensional gel 
electrophoresis (29), a 45-kD protein was la- , - . - +  

beled in the absence of Ptx (panel I). Ptx Ant,- 

catalyzed the ADP-ribosylatiofl of two addition- Gmmmn ~ n t i - 6 ,  AMP-G,, A ~ I I - G , ~  ~ n t i - G  ,,,2 I ~ ~ I - G , ~  

al proteins (panel I) .  Separation of the ADP- B a * I I ' I 

ribosylated proteins by SDS-PAGE (9% gels) in 
the presence of 8 M urea revealed no sub- 

43! ( 

I 
strates in the absence of the toxin (panel I I ,  
lanes a and c). Ptx catalyzed ADP-ribosylation 30 

of two proteins (39 and 42 kD) in mast cell 
extract (panel I I ,  lane d) and ADP-ribosylation 

- 
of at least two proteins in rat brain membranes (panel I I ,  lane b). (B) Solubilized mast cell proteins 
(75 kg per lane, lanes b, d, f ,  h,  j, and I); rat brain membranes (100 pg per lane, lanes a, c, and i); 
a mixture of G, and Go, purified from rat brain membranes (4 pg per lane, lanes e and g); and an 
extract of HL-60 membranes (150 pg per lane, lane k) were separated by SDS-PAGE with 8 M urea, 
transferred to nitrocellulose membranes, and analyzed with the indicated antibodies to G proteins 
(30). 

cretion that was completely inhibited by 
the EC peptide (Fig. 2B). Thus, Ga, 
appears to mediate PLC-independent exo- 
cytosis in response to 48/80. 

Secretion was also induced by AlF;, 
which activates heterotrimeric but not 
small GTP-binding proteins (23), and by 
GTP-y-S (Fig. 3A). When the cells were 

48/80 + + + + 
Nsomycin - + - + 
EC - - + + 

Fig. 2. Effect of EC and KE peptides on 48180- 
induced histamine release. Purified mast cells 
were permeabilized by ATP (31) in the pres- 
ence of the indicated concentrations of the KE 
(a) or EC (0) peptides (A) or in the presence or 
absence of EC peptide (250 kglml) and neo- 
mycin (1 mM) (B). The cells were subsequently 
resealed and treated with 48/80 (5 kglml). The 
reactions were quenched and the amount of 
secreted histamine was measured. Values in 
(A) are presented as percentage of the release 
measured in the absence of peptides which 
varied between 40 to 80% of total histamine. 
Each experimental point represents the mean 
of duplicate samples of a representative exper- 
iment that was repeated with similar results at 
least three times. 

permeabilized with SLO, under conditions 
in which PLC is not involved (24) and 
Ca2+ is required (2), EGTA inhibited exo- 
cytosis induced by both types of stimuli 
(Fig. 3A). That is, secretion required the 
presence of CaZ+ that is presumed to mod- 

Fig. 3. Histamine release from SLO-permeabi- 
li7nd cells. (A) Purified mast cells were perme- 
abilized by SLO in the presence of 1'bO p M  
GTP-y-S (lanes 2 and 3); NaF (30 mM, lanes 4, 
6, and 7); AICI, (50 pM, lanes 5, 6, and 7); and 
EGTA (1 mM, lanes 3 and 7). (B) For the 
introduction of antibodies, cells were permeabi- 
lized for 10 min at 37°C in the presence of either 
AS17 (33.5 pglml, lanes 5 and 6) or EC (33.5 
kglml, lanes 3 and 4) antibodies before they 
were stimulated with GTP-y-S (100 pM,  lanes 2, 
3, 5, and 7) or with GTP-y-S (100 pM) and 
EGTA (1 mM, lane 7). After further incubation 
for 20 min, the reactions were quenched and 
the amount of secreted histamine was mea- 
sured. For permeabilization, purified mast cells 
were incubated for 20 min at 37°C with reduced 
SLO (0.4 IUIml, Wellcome Diagnostics) in a 
buffer containing 137 mM NaCI, 2.7 mM KCI, 
5.6 mM glucose, bovine serum albumin (BSA) 
(1 mglml), and 20 mM Hepes (pH 7.2). 
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Fig. 4. Subcellular localization of Gq, and Ga, in rat peritoneal mast cells. (A) respective immunizing peptide (1 00 kg/ml, b and d, respectively). (8) 
Purified mast cells were incubated with either affinity-purified ASP (33.5 Staining of control (a and c) or BFA-treated (b and d) cells with EC (a and b) 
d m l ,  a) or affinity-purified EC (50 pglml, c). To show specificity of staining, and with antibodies to the Golgi marker mannosidase II (c and d). Staining 
we also incubated the cells with antibodies that had been incubated with the was done with lissamine rhodamin~onjugated antibodies (32). 

ulate the activity of the G, protein by 
binding to a Caz+-binding protein (C,) 
with characteristics of an intracellular pseu- 
doreceptor (3, 4). Permeabilization with 
SLO, unlike permeabilization with ATP4-, 
allowed the introduction of the antibodies 
AS17 and EC that specifically bind to the 
COOH-terminal ends of Gari, and Gari3, 
respectively. Of these two antibodies, only 
EC inhibited GTP-y-S-induced release to 
the same extent as did EGTA (Fig. 3B). 
These results indicate that activation of G, 
is eliminated either by preventing the acti- 
vation of C, with EGTA or by blocking the 
interaction between activated C, and GE 
with EC antibodies. This finding further 
supports the notion that the putative C, 
protein activates Gari3 in a receptor-like 
manner (3). 

The protein Gi3 exists exclusively in the 
Golgi compartment in LLC-PK1 cells, 
where it regulates intra- and trans-Golgi 
trafficking (25). Therefore, we studied the 
subcellular localization of Giz and Gi3 in 
mast cells. Whereas the Gqz-specific AS17 
antibodies were localized to plasma mem- 
brane exclusively (Fig. 4A), the Gari3- 
specific EC antibodies stained both the 
plasma and the Golgi membranes (Fig. 
4A). The latter membrane was also stained 
by antibodies to the Golgi marker mannosi- 
dase I1 (Fig. 4B). Hence, in mast cells Gi3 
would be accessible to interaction with 
secretagogues that insert into the plasma 
membrane. 

The probable participation of both Gi3 
and members of the Rab family (6) in the 
late stages of exocytosis in mast cells indi- 
cates that there are similarities between 
regulated and constitutive secretion. How- 
ever, the fungal drug brefeldin A (BFA), 

which disrupts the Golgi by influencing the 
small molecular size GTP-binding protein 
ARF (26). had no effect on secretion in- 
duced by 48/80 (22). BFA abolished the 
staining of the Golgi membrane with anti- 
body to mannosidase I1 or EC, whereas 
staining of the plasma membrane with EC 
was not affected (Fig. 4B). Therefore, 
Golgi-bound Gi3 may not participate in the 
control of regulated secretion. Further- 
more, unlike Golgi-bound Gi3 which inhib- 
its constitutive secretion (25), the plasma 
membrane-bound form of Gi3 appears to 
facilitate regulated exocytosis. Similarly, 
peptides that correspond to the effector 
domain of the Rab3a protein stimulate the 
exocytotic process (6), whereas they inhibit 
transport from the endoplasmic reticulum 
to Golgi (27). These differences might be 
related to the multicycle nature of the 
constitutive Golgi trafficking as compared 
with the single fusion event that occurs 
during the process of regulated exocytosis. 

In conclusion, our data suggest that like 
constitutive secretion regulated exocytosis 
is regulated by at least one heterotrimeric G 
protein (G,) and at least one small GTP- 
binding protein of the Rab family. These 
GTP-binding proteins seem to communi- 
cate through a yet undefined mechanism to 
evoke membrane fusion and exocytosis in a 
Caz+-independent manner. 
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nyl fluorlde (PMSF) 10 mM Plpes (pH 7 0) and 
0 5% Trlton X-100 After one wash wlth PBS and 
two washes wlth 0 05% Tween In PBS (Tween- 
PBS) the cells were Incubated for 30 mln at 
room temperature wlth afflnlty-purlfled AS17 
(33 5 pglml) afflnlty-purlfled EC (50 pglml) or 
antiserum to mannosldase II (1 200) dlluted In 
Tween-PBS After three washes w~th Tween PBS 
buffer the cells ware Incubated for 30 mln at 

room temperature wlth llssamlne rhodamlne- 
labeled ant~body [afflnlty purlfled goat antlbody 
to rabb~t ~mmunoglobul~n G (Jackson Immuno- 
research Laboratories West Grove PA) 1 40 
d~lut~on In Tween-PBS buffer] Subsequently the 
cells were washed once wlth Tween PBS and 
twlce wlth PBS The cells were vlewed on a Zelss 
Awoskop microscope w~th  a 1OOx Plan-Neofluar 
objective and photographed on Fujlchrome 
3200 fllm For peptlde lnhlblt~on each antlbody 
was Incubated for 2 hours at room temperature 
w~th  the respective peptlde (100 pglml) For 
treatment wlth BFA a slmllar labellng procedure 
was used However the adhered cells were 
washed and treated wlth BFA (10 pglml) for 10 
mln In PBS at 37°C before flxatlon 

33 We thank Y Zlck and J R Glllene for helpful 
d~scuss~ons and a crltlcal readlng of this manu- 
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Donaldson for thelr generous glft of antlbodles 
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A Link Between Cyclin A Expression and synchronized in G~ were exposed to growth 

Ad hesion-Dependent Cell Cycle Progression factors (fetal calf serum and epidermal 
erowth factor) (9) and collected at times - - , ~, 

corresponding to transit through G, (10). 
Thomas M. Guadagno, Motoaki Ohtsubo, James M. Roberts, RNA blot hybridizations ( I  I )  showed that 

Richard K. Assoian* the accumulation of Cdc2 and cyclin Dl 
mRNAs was independent of cell anchor- 

Cell adhesion has an essential role in regulating proliferation during the G, phase of the age, whereas the accumulation of cyclin A 
cell cycle, and loss of this adhesion requirement is a classic feature of oncogenic trans- mRNA was strictly anchorage-dependent 
formation. The appearance of cyclin A messenger RNA and protein in late G, was de- in both NRK and NIH 3T3 cells (Fig. 1A). 
pendent on cell adhesion in both NRK and NIH 3T3 fibroblasts. In contrast, the expression In adherent cells, cyclin A mRNA was first 
of Cdc2, Cdk2, cyclin Dl ,  and cyclin E was independent of adhesion in both cell lines. detected in late G, (Fig. IA), suggesting a 
Transfection of NRK cells with a cyclin A complementary DNA resulted in adhesion- possible role for cyclin A in mediating 
independent accumulation of cyclin A protein and cyclin A-associated kinase activity. anchorage-dependent cell cycle progression 
These transfected cells also entered S phase and complete multiple rounds of cell division from late G, to S. 
in the absence of cell adhesion. Thus, cyclin A is atarget of the adhesion-dependent signals Adherent and nonadherent NRK and 
that control cell proliferation. NIH 3T3 cells synchronized at early S 

phase by incubation with hydroxyurea (2) 
were analyzed for CdkZ, cyclin E, and 
cyclin A protein (Fig. 1B). Immunoblot- 

Adhesion to substratum is required for the the synthesis of these Cdk's or cyclins was ting (12) showed that the overall amounts 
proliferation of most mammalian cell types; anchorage-dependent. of CdkZ and cyclin E proteins were anchor- 
nonadherent cells fail to proliferate despite Adherent and nonadherent fibroblasts age-independent, although the distribution 
the presence of growth factors and nutrients 
( 1 ,  2 ) .  In NRK and NIH 3T3 fibroblasts, 
this adhesion requirement can be explained Fig. 1.  Effect of cell ad- A NRK NIH 3T3 B NRK NIH 3T3 

in terms of a discrete cell cycle transition hesion on cell c ~ c l e d e -  cdc2 -1.6 

that is manifest in late G, and prior to the pendent Of 
cdk2 m4 

rise in histone H1 kinase activity character- 'Yclin A. (A) Attach- 
ment-dependentexpres- 4 .5  - ,-r I. ., re.) cyl Dl d4.5  _a cyl 

istic of cells entering S phase ( 2 4 ) .  G,/S 
sion of cyclin A mRNA, 3,0* histone H 1 kinase activity likely results Adherent and nonadher- cy~ A -3.0 

-1.8 - r  cylA a ' from the activation of the Cdc2 or CdkZ ent NRK and NIH 3T3 M S M S cyclin-dependent kinase (Cdk) by cyclin A fibroblasts synchronized 285 

or cyclin E (6 -8 ) .  Thus, we asked whether at Go were exposed to 

"OWth factors' Similar Adherent Nonadherent Adherent Nonadherent 
T. M. Guadagno and R K. Assolan, Department of amounts of isolated total 
Blochemistry and Molecular Biophysics and the Cen- RNA (see 28s) were Period of mitogen treatment (hours) 
ter for Reproduct~ve Sc~ences Columbla Unlverslty 
New York NY 10032 
M Ohtsubo and J M Roberts Department of Bas c 
Sclences Fred Hutchlnson Cancer Center Seattle 
WA 981 04 

'To whom correspondence should be addressed at 
the Department of Cell Blology and Anatomy and 
Cancer Center Un~vers~ty of Mtamt School of Medl- 
clne P 0 Box 016960 M~aml FL 33101 

fractionated and hybrid- 
ized to cDNA probes for p34CdC2, cyclin D l ,  and cyclin A. Flow cytometry confirmed that both the 
adherent and nonadherent cells remained in G, throughout the time points tested. Molecular size 
markers are indicated at left (In kilobases). (B) Attachment-dependent expression of the cyclln A protein. 
Adherent (M, monolayer) and nonadherent (S, suspension) hydroxyurea-synchronized NRK and NIH 
3T3 cells were prepared, collected, and extracted. Equal amounts of protein from each extract were 
subjected to immunoblot analysis. Cell v~ability was 90%, as determined by trypan blue exclusion, 
throughout the experiments. 
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