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Tethering Ri bozymes to a Retroviral Packaging 
Signal for Destruction of Viral RNA 

Bruce A. Sullenger and Thomas R. Cech* 
Cellular compartmentalization of RNAs is thought to influence their susceptibility to ri- 
bozyme cleavage. As a test of this idea, two retroviral vectors-one encoding a hammer- 
head ribozyme designed to cleave lacztranscripts and another encoding the lacZ mes- 
senger RNA-were coexpressed inside retroviral packaging cells. Because of the retroviral 
packaging signal, the ribozyme would be expected to colocalize with the IacZ-containing 
viral genomic RNA but not with the lacZ messenger RNA. The ribozyme was found to 
reduce the titer of infectious virus containing lacZ by 90 percent, but had no effect on 
translation of laczmessenger RNA. These results indicate that sorting gene inhibitors to 
appropriate intracellular sites may increase their effectiveness. 

T h e  ability to target ribozymes to cleave 
viral RNAs in vitro has led to speculation 
about their potential therapeutic value as 
antiviral agents in vivo ( I ) .  To develop 
ribozymes for this purpose, however, one 
must consider the characteristics that dis- 
tinguish these two settings. In test tubes, 
ribozymes and their substrates diffuse freely, 
and trans-cleavage can proceed as fast as 
RNA duplex formation (2). In cells, RNAs 
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do not appear to diffuse freely but rather are 
sorted to specific cellular locations (3). 
Such compartmentalization of viral RNAs 
in vivo may reduce their availability to 
ribozymes. We propose a strategy that takes 
advantage of the cell's propensity to com- 
partmentalize biological molecules. We 
show that delivery of a ribozyme to the 
same cellular location as its target can 
substantially increase the effectiveness of 
the ribozyme. 

Our experimental system exploits proper- 
ties of retroviral replication as well as retrovi- 
ral vector-mediated gene transfer. We used 
two types of Moloney murine leukemia virus 
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(MoMLV) vectors (Fig. 1A). The retroviral 
vector B2A contains the lac2 gene (4). The 
lacZ-encoding transcripts were targeted for 
cleavage by two hammerhead ribozymes (5, 6) 
and were thus used to report ribozyme-medi- 
ated inhibition. The retroviral vector 
N2A:HamPlG encodes the selectable marker 
y o T  (a gene for neomycin resistance) and a 
hammerhead ribozyme. The vector 
N2A:HamP2G is identical to N2A:HamPlG 
except for sequence changes in the flanking 
arms of the hammerhead that make it recog- 
nize a different region of the lac2 coding 
sequence (Fig. IB) (7). The N2A:HamP 
vectors were used to transfer and express 
ribozyme-containing RNAs in an ecotropic 
packaging cell line (E86D2A) containing the 
B2A retroviral vector (4, 8). An inactive 
variant of the hammerhead sequence, 
HamPlD (Fig. lB), was inserted into N2A to 
serve as a control for the importance of ri- 
bozyme activity. 

We confirmed the trans-cleavage activ- 
ity of these ribozymes in vitro by using short 
RNA oligonucleotides corresponding to ri- 
bozyme and substrate sequences. This anal- 
ysis also demonstrated that the HamPlD 
mutation eliminates hammerhead ribozyme 
activity (9). 

In E86/B2A cells, nearly identical lacZ- 

N2A:HAMP 7 
B Target pl Target P2 

* * 
3'-GCA UCA C ~ C  UGC GCU AGC C-5' 3'-AAG GCG GU'C UGC GGU GAC 0-5' 
5'-CGU AGU GU ACG CGA UCG G-3 5'-UUC CGC CA ACG CCA CUG C-3 

C A ,. d 

encoding transcripts have two distinct fates 
(Fig. 2A). Some of the transcripts serve as 
mRNAs and are transported to the cyto- 
plasm for translation. One can assess the 
abundance of these mRNAs by measuring 
the activity of the lac2 gene product P-ga- 
lactosidase @-gal) within the cells. The 
remaining transcripts serve as genomic 
RNAs for the replication of the retroviral 
vector and are sorted to sites of viral bud- 
ding on the surface of the packaging cells. 
The abundance of these genomic RNAs 
can be assessed by determination of the 
p-gal viral titer released from the packaging 
cells. 

We hypothesized that the MoMLV encap- 
sidation machinery would colocalize ri- 
bozyme-encoding genomic RNAs with B2A 
genomic RNAs (1 0, 1 1) (Fig. 2B). In con- 
trast, the N2A:HamP and B2A mRNAs 
would probably be localized in different nucle- 
ar tracts because they would be transcribed 
from proviruses integrated at distant sites on 
the cellular chromosomes (3, 1 1, 12). Thus, if 
colocalization of ribozyme and substrate 
RNAs enhances trans-cleavage of the sub- 
strate, one would predict the reduction in titer 
of p-gal virus to be greater than the reduction 
in P-gal activity in these cells. 

The ribozyme-containing templates were 

A - B2A RNA - .  

Translation 

I Packaging cell 1 - 
B I B2A RNA 
o N2A:HamO RNA 

Translation 

Packaging cell 

Fig. 1 (left). Structures of the retroviral vectors and ribozymes. (A) The B2Avector contains the lacZ 
gene under the control of the MoMLV long terminal repeat (LTR) promoter The N2A:Hamp vectors 
contain hammerhead rlbozyme sequences in their 3' LTRs, which are expressed as part of the 
full-length vector transcript. Both B2A and N2A:Hamp contain the MoMLV packaging signal, $, 
which is also present in full length vector-derived transcripts. Oligonucleotides corresponding to the 
HamplG, Hamp2G, and Hampl D ribozymes were cloned into the Apa I and Bgl I I  restriction sites 
in the U 3  region of the 3' LTR of the retroviral vector N2A (25) to generate the N2A:HamplG, 
N2A Hamp2G, and N2A Hampl D vectors. (B) RNA sequences of the Hampl G and Hamp2G 
hammerhead ribozymes are shown base-palred to their IacZtarget sequences. A single nucleotide, 
the boxed G, was deleted from the catalytic core of Hampl G to create the Inactive control r~bozyme 
Hampl D. The target p1 and target p2 sequences reside in the middle of the IacZcoding sequence 
~n the B2A-derived transcripts and are shown in bold (7). Substrate cleavage sites are indicated by 
arrows. Fig. 2 (right). Fates of transcribed retroviral vector RNAs inside packaging cells and 
proposed colocalization of N2A:Hamp and B2A genomic RNAs ~n such cells. (A) Nearly identical 
B2A-derlved RNAs serve as mRNAs and genomic RNAs in a packaging cell. The viral proteins gag, 
pol, and env are constitutively expressed inside packaging cells, which allows packaging of 
$-containing transcripts into viral particles (8, 10). (B) Coexpression of B2A and N2A:Hamp RNAs 
in a packaging cell should result in both RNAs being used for translation and packaging. The B2A 
and N2A:Hamp genomic RNAs should be colocalized by the encapsidation machinery, whereas the 
corresponding mRNAs are unlikely to be colocalized. 

introduced into E86/B2A cells by retroviral 
vector-mediated gene transfer instead of 
transfection to avoid problems with variable 
lac2 expression associated with clonal isola- 
tion of E86/B2A cell lines (1 3, 14). We 
infected the E86/B2A cells at a multiplicity of 
infection (MOI) of 10 with the various ri- 
bozyme and control vectors, allowed the cells 
to expand, and then quantified the p-gal 
activity within the cells and the neor and P-gal 
virus released by the cells (Fig. 3A) (1 5, 16). 
No substantial reduction of P-gal activity was 
observed inside cells containing a functional 
hammerhead vector (N2A:HamPlG or 
N2A:HamP2G) as compared with cells con- 
taining a control vector (N2A or 
N2A:HamPlD). Similarly, no difference was 
seen in titers of neor virus released from the 
various vector-containing cells. However, the 
titers of P-gal virus released from cells con- 
taining an active hammerhead ribozyme were 
reduced by 89.5 a 3.4% (average SD, n = 
10, N2A:HamPlG and N2A:HamP2G in 
five experiments) as compared with that of 
cells containing the inactive ribozyme 
N2A:HamPlD (Fig. 3, A and B). 

Internal controls provided evidence that 
the reduction in virus titer was due to the 
ribozyme and not to an unrelated cellular 
change. The fact that P-gal activity was 
comparable in E86/B2A cells containing a 
ribozyme or a control vector suggests that 
B2A transcription was unchanged in these 
cells. Also, the observation that the neo' 
viral titers were similar for all cells indicates 
that the packaging machinery was operat- 
ing correctly and had not become limiting. 

To determine whether the ratio of ri- 
bozyme to substrate RNA affects the reduc- 
tion in P-gal viral titer, we infected lo4 
E86/B2A cells at various MOIs. With 
N2A:HamPlG and N2A:HamP2G, the re- 
duction in P-gal viral titer decreased as the 
MOI was decreased from 10 to 2 to 0.4. In 
contrast, no substantial change in P-gal 
viral titer occurred when control vectors 
were used to infect at these MOIs (Fig. 
3C). In another experiment, we infected 
E86/B2A cells at MOIs of 10, 1 .O, and 0.1 
and again found that reduction in P-gal 
viral titer was directly related to the MOI 
(14). 

To confirm that the decrease of P-gal 
viral titer from E86/B2A cells infected with 
N2A:HamPlG (MOI 10) was due to de- 
struction of B2A RNA, we quantified the 
viral RNAs in the packaging cells, in the 
viral particles released from these cells and 
in NIH 3T3 cells infected with the viral 
supernatants. RNase protection analysis 
(Fig. 4) ( 1  7) demonstrated that B2A RNA 
concentrations were substantially reduced 
in both viral particles and infected cells 
only when the active hammerhead retrovi- 
rus was present (Fig. 4A). The ratio of B2A 
to N2A:HamP RNAs in packaging cells 
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containing the active ribozyme (BIN,) was sistent wi th the observation that P-gal ac- 
0.12 -+ 0.03 (18), whereas in packaging tivity was similar in these cells. The low 
cells containing the inactive ribozyme the ratios of B I N  indicate that there was a 
corresponding ratio (BIN,) was 0.10 +- substantial excess o f  hammerhead-contain- 
0.01. The similarity of these ratios i s  con- ing RNA over target RNA in the packaging 

Fig. 3. Inhibition of p-gal viral titer from E86lB2A 
cells containing active ribozymes. (A) Amphotropic 
viral supernatants containing the N2A:HamplG, 
N2A:Hamp2G, N2A:Hampl D, or parental N2A retro- 
viral vector (13) were used t:, infect E86IB2A cells 
(lo4) at an MOI of 10 in the presence of polybrene 
(hexamethrine bromide, 8 pglml) for 2 hours. The 
cells were expanded to 5 x 10" in DMEM with 10% 
fetal calf serum, and the media were changed. 
Twelve hours later, the internal p-gal activity and the 
titers of released p-gal and ned  viruses were deter- 
mined. The p-gal activities were determined by a 
standard ONPG (Onitrophenyl-p-D-galactopyrano- 
side) assay ( 4 ) ,  and the results are plotted relative to 
the p-gal activity found in E86lB2A cells infected 
with N2A:HamplD (16). We determined the p-gal 
and ned  viral titers by infecting NIH 3T3 cells (lo5) 
with serial dilutions of the supernatants removed 
from the various pools of E861B2A cells and assay- 
ing for B2A infection by a standard X-gal (5-bromo- 
4-chloro-3-indolyl-p-o-galactopyranoside)-agarose 
staining procedure (26) at 36 hours after infection. 
Cells were assayed for N2A:Hamp infection by se- 
lection with G418 (0.7 mglml). These values are also 
plotted relative to N2A:HamplD values (16). (B) 
Four sets of E861B2A cells were infected with 
N2A:Hampl D, N2A:Hampl G, and N2A:Hamp2G in 
parallel as described above (A), and the titers of 
p-gal virus released from the cells were determined. 
The average titers from this experiment are shown 
with standard deviations. (C) The E861B2A cells 
(lo4) were infected with the various N2A:Hamp or 
N2A retroviral vectors at MOls of 0.4,2, and 10. Cells 
were expanded, and p-gal viral titers were deter- 
mined as in (A). 

A P-gal Protein 

m p-gal Tier 

- 1  2 3 4 A v e  
Experiment 

MOI 

Fig. 4. Quantitation of B2A and N2A:Hampl RNAs from pack- A P V I 
aging cells, virions, and infected cells. RNase protection analy- G D G D G D N Y -  
sis with (A) a 190-nt lad-specific RNA probe to quantitate 201- 
B2A RNA or (B) a 150-nt ned-specific probe to quantitate 190- 

N2A:Hampl RNA ( 17). Probe RNA was protected from digestion 
by hybridization to the following RNA samples: P, RNA from 
E86lB2A packaging cells infected with N2A:HamplG (G) or 
N2A:Hampl D (D); V, RNA from virions released from the same 
cells; and I, RNA from NIH 3T3 cells infected with B2A/ 
N2A:Hampl virus. Lane N contains uninfected NIH 3T3 cell 
RNA; lane Y contains yeast RNA; and lane (-) contains 10% of 147- 1)1 
input RNA probe without RNase treatment. DNA fragments from 
a restriction digest of pBR322 with Msp I were 32P end-labeled 
and denatured to produce molecular size markers (indicated on 123- 
the left in nucleotides). Protected RNAs were analyzed on a 6% 
polyacrylamide gel with 8 M urea and exposed to x-ray film for 5 
days (A) or 12 hours (B). 

cells. In RNAs isolated from viral particles, 
BIN, was essentially unchanged (0.11 * 
0.02), whereas BING was reduced to 0.02. 
The substrate escape ratio, calculated as 
(B&)I(BIN,) and representing the resid- 
ual fraction of substrate-containing tran- 
scripts in N2A:HamPlG samples relative 
to N2A:HamPlD samples, was 0.18 -+ 
0.03. In RNAs from infected NIH 3T3 
cells, BIN,, was again 0.10 * 0.01, BING 
was 0.02, and the substrate escape ratio was 
0.20 * 0.02. The fact that the substrate 
escape ratio changes from 1.2 in packaging 
cells to -0.19 in viral particles and infected 
cells (an 84% reduction) correlates well 
wi th the reduction o f  P-gal viral titer in 
these cells (Fig. 3, A and B). N o  cleavage 
products were detected by RNase protec- 
t ion analvsis: one vossible exvlanation i s  , , 

that cleavage occurred just prior to RNA 
encapsidation, and cellular RNases degrad- 
ed the products. 

Our results support the hypothesis that 
colocalization of ribozvmes wi th their sub- 
strates i s  essential for efficient cleavage 
(19). Because such colocalization could be 
rate limiting, it may be possible to increase 
the efficacy of ribozymes as antiviral agents 
bv increasing the rate at which the ri- - 
bozyme finds i t s  substrate in vivo. For ex- 
ample, tethering a human immunodefi- 
ciency virus (HIV)-specific ribozyme to the 
HIV packaging signal or to the rev response 
element (20) may enhance the ribozyme's 
activity by colocalizing it wi th HIV tran- 
scripts inside cells. This strategy may also 
reduce the amount o f  nonspecific RNA 
cleavage by limiting the number of cellular 
RNAs exposed to the ribozyme. 
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Activation of Exocytosis by the Heterotrimeric 
G Protein G,, 

Meir Aridor, Gladys Rajmilevich, Michael A. Beaven, 
Ronit Sagi-Eisenberg*-/- 

Secretagogues of rat peritoneal mast cells, such as mastoparan and compound 48/80, 
induce mast cell exocytosis by activating directly the guanosine triphosphate-binding 
proteins that are required for exocytosis. The introduction of a synthetic peptide that 
corresponds to the carboxyl-terminal end sequence of Ga, into the cells specifically 
blocked this secretion. Similar results were obtained when antibodies to this peptide were 
introduced. The Ga,, was located in both the Golgi and the plasma membrane, but only 
the latter source of Gai3 appeared to be essential for secretion. These results indicate that 
Gai3 functions to control regulated exocytosis in mast cells. 

T h e  nonhydrolyzable analog of guanosine 
triphosphate (GTP), guanosine 5'-0-(3- 
thiotriphosphate) (GTP-y-S) , when intro- 
duced into patch-clamped (1) or strepto- 
lysin 0 (SL0)-permeabilized mast cells (2, 
3), stimulates exocytosis independently of 
phospholipase C (PLC) . This suggests that 
a GTP-binding protein, designated G,, 
may act downstream of PLC in the control 
of regulated secretion (4). However, where- 
as both small GTP-binding proteins of the 
Ras (5) and Rab (6) families as well as 
heterotrimeric G proteins (7) have been 
implicated in exocytosis, the identity of G, 

has remained obscure. Certain oositivelv 
charged secretagogues of rat peritoneal mast 
cells, including mastoparan (8 ) ,  substance 
P ( 9 ) ,  compound 48/80 (7), neomycin 
(1 O), and a variety of kinins (I I ) ,  induce 
exocytosis in a receptor-independent man- 
ner by interacting directly with heterotri- 
meric G oroteins. Although thev activate - 
phosphoinositide metabolism, these secret- 
agogues can also induce exocytosis indepen- 
dently of PLC, presumably by directly acti- 
vating GE (1 0). The finding that treatment 
with pertussis toxin (Ptx) inhibits exocyto- 
sis under these conditions indicated that G, - 
is a Ptx-sensitive heterotrimeric G protein 
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