
situation: (i) In our attempt to enhance z ,  
the number of magnetic neighbors, we were 
only partially successful (in 2, z = 1613, 
larger than z = 4 in 1 but less than z = 6 in 
the expected ideal structure); or (ii) the 
nonnegligible presence of low-spin Cr" 
(0.175) in the B(CN), sites induces a struc- 
tural (and magnetic) disorder, which defeats 
our experimental strategy. The exchange 
interaction in 2 is therefore more complex 
than in 1, and its detailed description would 
be beyond the scope of this note. It can be 
said, however, that the lowering of Tc in 2, 
compared with 1, is in large part a result of 
the fact that two t,, unpaired electrons of the 
low-spin Cr" present in 2 are less efficient in 
inducing antiferromagnetic interactions 
than the three of Cr"' in 1. 

An important property of the two com- 
pounds is their stability in atmospheric con- 
ditions: Thev mav be left for weeks in the , , 
laboratory in bottles opened to air from time 
to time without apparent chemical change of 
Cr" or loss of the magnetic properties. Such 
stability is surprising (the reduction properties 
of Cr" are well-known) but valuable because 
it opens the possibility of useful applications at 
room atmosphere. The two compounds, 
stirred in hydrochloric acid (1 mol liter-') for 
24 hours and then dried under vacuum at 
100°C. remain unchanged on return to room u 

atmosphere. In both compounds, the p-cyano 
CF1-Cr" insoluble network, as soon as it is 
formed, appears robust and chemically inert. 

The deep green compound 2 deserves fur- 
ther comment: It displays in the near IR, in 
contrast to the light gray 1, an intense absorp- 
tion band centered at 8720 cm-'. a much 
lower energy than that of the intervalence 
band of Pmssian blue (15,000 cm-') (34). 
Hence, 2 presents a higher T, (190 K com- 
pared with 5.5 K) and an easier electronic 
delocalization than Pmssian blue. These two 
associated properties can open new perspec- 
tives in the field. and we consider 2 as the first 
member of a series of promising new systems. 

We are now engaged in a more complete 
characterization of the two compounds and, 
in particular, in the study of their magneto- 
optical properties. Growth of single crystals 
and new syntheses are in progress in order 
to obtain new bimetallic and mixed-va- 
lence systems with higher T,. 
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Binding to DNA and the Retinoblastoma Gene 
Product Promoted by Complex Formation of 

Different E2F Family Members 

Wilhelm Krek, David M. Livingston,* Suman Shirodkar 
The E2Ffamily of transcription factors functions in the control of the mammalian cell cycle. Here 
it is shown that two family members, E2F-1 and DP-1, form specific heterodimers in vivo, a 
process that enhances DNA binding, transactivation, and the binding of the retinoblastoma 
gene product. These results suggest that heterodimerization regulates E2F function and con- 
tributes to cell cycle control. 

T h e  E2F family of transcription factors (1) 
contributes to cell cycle regulation through 
the controlled activation of certain growth- 

Dana-Farber Cancer Institute and Harvard Medical 
School, Boston, MA 02115. 
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responsive genes (2). Complementary 
DNAs (cDNAs) from two family members, 
EZF- 1 and DP- 1, were cloned and shown to 
be components of Rb-EZF complexes (3-6). 
Because E2F can bind its cognate DNA 
binding motif as a complex of different sub- 
units in vitro (7) ,  we examined whether 
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E2F-1 and DP-1 form heterodimers in vitro monoclonal antibody (mAb). DP-1 was not 
and in vivo. immunoprecipitated by HA mAb (Fig. 1 A). 

In vitro-translated E2F-1, tagged with the When HA-E2F-1 and DP-1 were mixed, the 
influenza hamagglutinin epitope (HA), was same antibody precipitated both DP-1 and 
mixed with the DP- 1 translation product and HA-E2F-1 (Fig. 1 A), suggesting that com- 
subjected to immunoprecipitation with HA plexes had formed. Similar results were ob- 

Fig. 1. E2F-1 and DP-1 associate in 
vitro and stimulate E2F-specific 
DNA binding activity. (A) HA-E2F-1 
and DP-1 (22) were translated in 
vitro and subjected to HA mAb im- 
munoprecipitation either alone 
(lanes 1 and 2) or after mixing (lane 
3) (23). In vitro translation (IVT) 
products of HLE2F-1 and DP-1 
(indicated by an arrow) are shown 
in lanes 4 and 5, respectively. (B) 
IVT products of E2F-1 and DP-1 
were incubated with an E2F oligo- 
nucleotide, either singly or after 
mixing, and analyzed by EMSA 
(24). Lanes 1 through 3 reveal E2F 
com~lexes in U937 cells (lane 1) 

Un- 

A HA mAb B ij' primed HA-EZF-1 DP-1 HA-ESF-1 t DP-1 
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mutant (922) (lane 3) on them. Side 

m 
markers: A, free E2F; B, Rb-E2F 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  13 14 15 
complexes; C, E2F-pl07-cyclin 
A-cdk2 complexes. HA mAb supershifting in the absence (lanes 7 and 12) or presence of HA peptide 
(lanes 8 and 13). Competition experiments were done with oligonucleotides containing elher a wild-type 
(wt, lane 14) or a mutant (mt, lane 15) E2F site derived from the dihydrofolate reductase (DHFR) promoter 
(9). RL, reticulocyte lysate; WCE, wholecell extracts. 

Fig. 2. The E2F-1 zipper is involved in E2F-I-DP-1 heterodimer formation. (A) The DNA binding region 
of E2F-1. (B) The IVT product of the b-Hl -H2-Zip region of E2F-1 was tested for DNA binding before 
(lane 6) and after mixing with HA-DP-1 (lane 7). HA mAb supershifting (lane 8) and oligonucleotide 
competition experiments (lanes 10 and 11) were done as described in Fig. 1B. Arrows indicate the 
position of complexes A and B. (C) As in Fig. 28, except that the M l  -H2 region of E2F-1 was assayed. 
The arrow indicates the position of complex C. (D) The bH1-H2 IVT product was assayed for DNA 
binding before (lane 2) and after 
mixing with full-length HAX2F-1 Transactivation 

(lane 3) and the b-H 1 -H2-Zip seg- A DNA binding domain 
and Rb 

binding domain 
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ing and oligonucleotide competi- 
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tained when only DP-1 was epitope tagged 
(8). 

In vitro-translated HA-E2F-1 displayed 
marginal E2F DNA binding activity, whereas 
DP-1 showed none (Fig. 1B). By contrast, 
mixing both increased the sequence-specific 
DNA binding activity of the former (Fig. 1B). 
These data suggest that DP-1 and E2F-1 form 
stable complexes and that complex formation 
is a prerequisite for high DNA binding activ- 
ity. These complexes were incompletely su- 
pershifted by HA mAb (Fig. 1B). Presum- 
ably, in some of them, the HA tag is either 
cleaved off or sterically hindered. 

In the E2F-1 sequence is a short basic 
region (b), two helical segments separated by 
a short nonhelical stretch (HI-H2), and a 
hydrophobic heptad repeat (Zip) (Fig. 2A). 
To identlfy regions of E2F-1 that are required 
for DP-1 binding, we mixed and assayed in 
vitro translates of the relevant polypeptides 
for DNA binding activity. The b-HI-H2-Zip 
segment (Fig. 2B), but not b-HI-H2 (Fig. 
ZC), bound to HA-DP-1 (complex A). 
Thus, heterodimerization of E2F-1 and DP-1 
requires the E2F-1 zipper. The b-HI-HZ-Zip 
and the b-H1-H2 segment are able to form 
homooligomers, which are probably dimers 
(complex B in Fig. 2B and complex C in Fig. 
ZC), as indicated by the appearance of a gel 
shift complex (Y) when HA-E2F-1 and 
b-HI-H2 are mixed (Fig. ZD). These data 
suggest that the m&-1 unit required for 
homodimerization is the b-HI-H2 segment. 
Similarly, the b-HI-H2-Zip and b-H1-H2 
products, when mixed, also formed ho- 
modimers (complex Z, Fig. 2D). Neither the 
HI-H2-Zip nor the HI-H2 products bound 
DNA or DP-1 (B), suggesting that the basic 
region is potentially involved in DNA bind- 
ing or oligomerization or both. 

The in vivo association of E2F-1 and DP-1 
was tested with mammalian expression plas- 
mids encoding E2F-1 and DP-1 (tagged and 
untagged) introduced into the Rb (-I-) cell 
line, Saos-2. Transfection of HA-E2F-1 
DNA led to two weak DNA binding com- 
plexes, which were absent in untransfected 
cell extracts (Fig. 3A). No new DNA binding 
complexes were detected in extracts of cells 
transfected with HA-DP-1 (Fig. 3A). How- 
ever, cotransfection of E2F-1 and DP-l result- 
ed in an increase in the intensities of these 
two gel shift complexes, seen after transfec- 
tion of E2F-1 alone (Fig. 3A), as if each was 
the product of an EZF-1-DP-1 (or its equiva- 
lent) heterodimer. The faster migrating spe- 
cies is a form of free E2F (9). The slower 
migrating species was disrupted by wild-type 
ElA, but not by a CR2 mutant unable to bind 
to the pocket of Rb family members (10). 
Because this complex did not react with an- 
tibodies to Rb and p107 (10). this E2F-1- 
DP-1 complex probably contains an E1A 
binding protein (or proteins) that is related to 
Rb and p107. 
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Cotransfection of Rb with HA-EZF-1 re- 
sulted in a gel shift complex that comigrated 
with the Rb-EZF complex from whole-cell 
extracts (Fig. 3A). The same complex was 
detected after cotransfection of HA-EZF- 1 (or 
EZF-I), DP-1 (or HA-DP-I), and Rb (Fig. 
3A), implying that Rb-E2F complexes con- 
tain, at least, Rb, an EZF-1-like subunit, and 
a DP-l-like subunit, with the latter two- 
present as a heterodimer. Moreover, antibody 
supershlft experiments suggest that E2F-1, 
DP-1, and Rb exist in the same DNA binding 
complex in vivo (Fig. 3B). No free E2F was 
detected (Fig. 3A), implying that het- 
erodimer formation facilitated Rb binding. 
Competition experiments indicated that the 
observed DNA binding activities were E2F- 
specific, and immunoblotting confirmed the 
presence of HA-E2F- 1, HA-DP- 1, and 
EZF-1 (10). 

After cotransfection of EZF-1 and DP-1 
into the Rb (+I+) cell line, U-2 OS, E2F-1- 
DP-1 complexes formed and were much more 
active in gel shift assays than either protein 
alone (Fig. 3C). Only a small fraction of the 
E2F- 1-DP-1 complexes migrated more slowly 
than known species of free E2F (Fig. 3C). In 
contrast, transfection of HA-EZF-1 alone led 
to the appearance of a single complex (Fig. 
3C) which resembled that of an endogenous 
Rb-EZF complex. It was supershifted by HA 
mAb and by mAbs to Rb (1 0). Transfection 
of HA-DP-1 alone led to very little DNA 
binding activity (Fig. 3C), implying that the 
synthesis or availability of E2F-1 or other 
suitable EZF family partners may be a limiting 
factor in the formation of EZF-1-DP-1 
heterooligomers in vivo. Together, these re- 
sults indicate that cosynthesis of EZF-1 and 
DP-1 results in heterooligomer formation, 
marked enhancement in their respective 
DNA binding activities, and efficient com- 
plex formation with one or more pocket 
proteins. 

Next, we tested DP-1 for its ability to bind 
to Rb. When in vitro-translated EZF-1 or 
DP-1 was mixed with glutathione-s-transfer- 
ase (GST)-Rb fusion proteins, E2F-1 bound 
efficiently whereas DP-1 did not (10). Similar 
mixing experiments with in vitro-translated 
Rb and HA-DP-1 or HA-EZF-1 that were 
followed by HA mAb immunoprecipitations, 
indicated that Rb did not bind to HA-DP-1 
and bound inefficiently to HA-EZF-1 (Fig. 
4A). When all three proteins were mixed, Rb 
binding was increased (Fig. 4A), indicating 
that heterodimer formation had facilitated 
pocket protein binding. Binding of the Rb 
pocket by EZF-1 is required, because there was 
no cooperation between DP-1 and an EZF-1 
mutant (A18) unable to bind to the Rb 
pocket (Fig. 4A) (I I). Complexes between 
this mutant and DP-1 did form (Fig. 4A) and 
displayed abundant DNA binding activity 
(10). 

To test whether DP-1-EZF-1 complex for- 

Fig. 3. E2F-1 and DP-1 associate with Rb in vivo and stimulate DNA binding activity. (A) Saos-2 
(Rb-I-) cells were transfected (25) with mammalian expression plasmids as indicated. Extracts 
were assayed for DNA binding activity (lanes 1 through 9) (9). Lane 10 shows cellular E2F 
complexes (the Rb-E2F complex is underrepresented). (B) Extracts of Saos-2 cells transfected with 
the indicated plasmids were assayed for DNA binding in the absence (lanes 1 and 6) and presence 
of HA mAb (lanes 2 and 7), RB mAb (mAb C36, lanes 3 and 8), affinity-purified anti-E2F-1 (lanes 
4 and 9) (26), and corresponding preimmune serum (CPI, lanes 5 and 10). (C) U-2 OS cells were 
transfected with expression plasmids as indicated and assayed for DNA binding. HA mAb 
supershifting is shown in lanes 2, 4, 6, and 8. 
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Fig. 4. DP-1 facilitates E2F-1-Rb binding in vitro and in vivo. (A) IVT products of E2F-1, DP-1, and 
Rb, alone or after mixing, were immunoprecipitated with HA mAb (lanes 1 through 3 and 6 through 
13) (23). IVT products are shown in lanes 4.5. and 14 through 17. (B) Saos-2 cells were transfected 
with the indicated expression plasmids (lanes 1 through 10). lmmunoprecipitations (23) were done 
with either HA mAb (lanes 1 through 9) or RB mAb (XZ77, lane 10). lmmunoprecipitates were 
processed for Western blotting with RB mAb (mAb 245) (18). The arrow points to coimmunopre- 
cipitated Rb. (C) Aliquots from cell extracts prepared in (B) were immunoblotted with mAb 245 
(upper panel), E2F-1 mAb (mAb SQ41) and HA mAb (lower panel) as described (18). Arrows 
indicate the position of the synthesized proteins. 
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mation facilitates Rb binding in vivo, we 
transfected Saos-2 cells with different combi- 
nations of expression plasmids encoding E2F- 
1, DP-1, and Rb. The amount of Rb copre- 
cipitating with HA-E2F-1 was significantly 
increased in the presence of DP-1 (Fig. 4B). 
Rb did not coprecipitate with HA-DP-1 but 
bound efficiently when both HA-DP-1 and 
E2F-1 were present (Fig. 4B). The fact that- 
Rb coimmunoprecipitated with HA-E2F-1 
suggests that endogenous DP-1 is available for 
complex formation with E2F-1 (Fig. 3, A and 
C )  . As assessed by immunoblotting (Fig. 4C), 
the amount of transfected cDNA product was 
comparable in each reaction mixture. 

As shown in Fig. 5, E2F-1 transactivated 
an E2F reporter plasmid 6- to 10-fold, 
whereas DP-1 displayed minimal transacti- 
vation function. When E2F-1 and DP-1 
were cotransfected, a 9- to 17-fold increase 
in transactivation was observed, suggesting 
that E2F-1 and DP-1 act cooperatively. 
Transactivation was dependent on func- 
tional E2F sites in the reporter plasmid (8). 

Existing evidence correlates Rbdependent 
G1 blockade with E2F binding (12, 13). 
Moreover, Rb suppresses the transactivating 
function of E2F in general (2) and of E2F-1 in 
particular (14, 15). E2F-1 and DP-1 were 
detected in previously characterized Rb-E2F 
complexes, which exist in G1 and likely 
contain unphosphorylated Rb (9). Here we 
show that E2F-1 and DP-1 are bound to one 
another in that setting as a heterodimeric 
complex. Because DP- 1-E2F- 1 heterodimer 
formation stimulates critical E2F functions, 
DNA binding, and transactivation, the 
llnked facilitation of Rb binding may be nec- 
essary to regulate the ultimate effect of this 
functional enhancement-activation of cer- 
tain genes needed for G I  exit or S phase 
progression or both. Therefore, because DP-1 
heterooligomerizes with E2F- 1 and recruits 
Rb, it is possible that DP-1 serves as a nega- 
tive regulator of G1 exit, until this effect is 
cancelled by subsequent Rb phosphorylation 
(16). At that point, DP-1 becomes a positive 

Fig. 5. E2F-1 and DP-1 20.0 

cooperate in E2F-de- 
pendent transactiva- 16,O 

tion. U-2 OS cells were a 
transfected (25) with 5 12,000 

an E2F luciferase re- 5 
porter plasmid ( 3 M  g 6,000 
E2F-Luc) (27) either 
alone, with E2F-1, with 4,000 

DP-1, or with both 
E2F-1 and DP-1 (from 
left to right). The lu- Alone t-F 1 D P  1 iL; 1 + 

ciferase values were DO-1 

normalized to P-galactosidase units to control 
for variations in transfection efficiency. The re- 
sults shown represent three separate experi- 
ments and the vertical lines ind~cate the stan- 
dard deviations. Similar results were obtained 
in Saos-2 cells (8). 

regulator by enhancing the DNA binding 
activity and transactivation power of the DP- 
1-E2F-1 oligomer. One might speculate that 
a positive regulatory effect of DP-1 develops 
close to or at a decision point in G I  when a 
cell becomes committed to cell cycle entry. 
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mega), according to manufacturer's instructions. 
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uct (unless otherwise specified) was mixed with 200 
pl of buffer A [50 mM KCI, 20 mM Hepes (pH 7.5). 
10 mM MgCI,. 10% glycerol, 0.5 mM dithiothreitol 
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was preincubated with 4 p & ~  of HA peptide (BAbCo), 
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pimelimidate (Pierce). Incubation and elution of an- 
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27. To construct 3 M L u c  (and 3xMUTLuc) we cloned 
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