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Effective Coupling in Biological Electron Transfer: 
Exponential or Complex Distance Dependence? 

Jeffrey W. Evenson and Martin Karplus* 
Calculations for a simple model electron transfer system and tuna cytochrome c demon- 
strate a dichotomy in the distance dependence of the effective coupling. In one regime, the 
effective coupling varies exponentially with distance and depends primarily on the average 
properties of the bridging material; in the other regime, the effective coupling has a complex 
distance dependence and is more sensitive to the details of the bridging material. Exper- 
iments and theory indicate that both regimes may occur in biological systems, providing 
a perspective on a recent controversy over the nature of the distance dependence. 

Electron transfer is fundamental to a wide 
range of important biological processes, in- 
cluding respiration and photosynthesis (1). 
Recent experimental advances, such as 
structural data for relevant proteins (2), 
provide a basis for meaningful theoretical 
approaches to the transfer rate. From anal- 
ysis of biological electron transfer systems 
and model proteins, a controversy has aris- 
en concerning the dependence of the elec- 
tronic coupling on the distance between 
the donor and the acceptor (3). It has been 
suggested both that there is a universal 
exponential dependence on the distance 
(4) and that the distance dependence is a 
complex function of the intervening mate- 
rial (5). These suggestions are not mutually 
exclusive. Depending on the energy differ- 
ence between the bridge orbitals and the 
donor-acceptor orbitals, the electronic cou- 
pling can vary exponentially with distance 
or have a more com~lex behavior. The 
present treatment is based on the inverse 
matrix technique (6) for calculating the 
electronic coupling that includes all paths 
between the donor and acceptor. We apply 
the approach first to a one-dimensional 
(ID) (single-pathway) model and then to a 
calculation including all possible pathways 
between the heme and arbitrarily located 
acceptors in tuna cytochrome c (7). 
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The rate k for the long-distance, non- 
adiabatic electron transfer reactions occur- 
ring in proteins is usually assumed to be 
given by (8) 

where ti is Planck's constant divided bv 2 ~ .  
Electronic degrees of freedom detertnine 
the effective coupling (H,,), and nuclear 
degrees of freedom determine the Franck- 
Condon factor (F.C.). The effective cou- 
pling is explicitly dependent on the tunnel- 
ing energy E (6), as is clear from the 
definition for H,, in the one-electron ap- 
proximation (9), which is given by 

Here, G(E) = (Hbrldge - E)-I is the 
Green's function (10) for the bridge Hamil- 
tonian Hbrid,,. The indices i and j run over 
all orbitals involved in the transfer process, 
and pD, (PI,) represents the coupling of the 
ith orbital to the donor (acceptor). Widely 
used pathway models approximate Eq. 2  by 
calculating the Green's function to lowest 
order in perturbation theory (10). In the 
single-pathway model, only the term that 
makes the most significant contribution to 
the sum is retained. The inverse matrix 
technique is an alternative to the approxi- 
mate pathway method (6). It exploits the 
ease of matrix inversion to compute the 

Green's function exactly, including all 
terms in the sum. Although the pathway 
method may provide qualitative insight, 
more accurate methods, such as full matrix 
diagonalization or the more powerful in- 
verse matrix technique (6, 1 1), are often 
reauired to attain auantitative accuracv. 

 he behavior o'f the effective coupling 
H,, is labeled "exponential" if it depends 
exponentially on the donor-acceptor dis- 
tance, and "complex" if its distance depen- 
dence is not exponential and is sensitive to 
the material intervening between donor 
and accewor. The correlation coefficient 
p(r, logH,,) between the donor-acceptor 
distance r and logH,, characterizes the 
behavior (12). If the effective coupling is an 
exponentially decaying function of dis- 
tance, p = - 1. If p is significantly different 
from - 1 (greater than -0.5, say), we label 
the system as "complex." 

An analytically solvable model, which 
has served as the starting point for many 
investigations since McConnell's original 
analvsis (1 3). illustrates the classification , . 
scheme. The model consists of a donor 
orbital and an acceptor orbital with tunnel- 
ing energy E connected to opposite ends of 
a linear chain of identical bridging ligands 
(Fig. 1A). We assume one orbital of energy 
Eb per ligand and include only nearest- 
neighbor coupling with hopping matrix el- 
ement p. The behavior of the effective 
coupling is determined by the dimension- 
less parameter a (6) 

Fig. 1. (A) The McConnell model (13). Circles 
represent donor and acceptor orbitals, squares 
correspond to bridging orbitals, and l~nes rep- 
resent coupling between orbitals with hopping 
matrix element p. The donor and acceptor 
terminate the chain and have energy E The 
bridging orbitals have energy E,. (B) Correla- 
t~on coefficient p as a function of the dimension- 
less parameter a for the model 1 D system. For 
a particular a,  p is the correlat~on coefficient for 
the set ( (2 ,  A,), (3 ,  A,), . , (50, A,,)}, where A, 
is the logarithm of the effect~ve coupling for a 
bridge with n links. The effective coupl~ng was 
computed analyt~cally with a formula derived in 
(6). 
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For la1 < 1, the effective coupling oscillates 
as a function of the donor-acceptor distance 
(6); the behavior is complex. For la1 > 1, 
the effective coupling decays exponentially 
with distance (6) ; the behavior is exponen- 
tial. A plot of the correlation coefficient as 
a function of a (Fig. 1B) shows a sharp 
transition at a = + 1 (14). 

To ex~lore the nature of the distance 
dependence in systems of biological inter- 
est, we treat a simple model for electron 
transfer in tuna cytochrome c. We assume 
that the heme iron is the donor and sepa- 
rately consider each of the 845 non-hydro- 
gen protein atoms as possible acceptors; 
analogous calculations with the pathway 

Fig. 2. (A) Correlation coefficient p as a function 
of the tunneling energy Efor tuna cytochrome c. 
The coordinates for tuna cytochrome c were 
obtained from the Brookhaven Protein Data 
Bank. Hydrogen atoms were added on the basis 
of geometry by use of the program Quanta 
(Molecular Simulations, Inc.). Crystal waters 
were deleted. The effective single-electron 
Ham~ltonian was computed with the parameters 
described in (16), and the inverse matrix tech- 
nique was applied to obtain the effective cou- 
pl~ng between the heme and the other 845 
non-hydrogen atoms of the protein (B) Loga- 
rithm of the effective coupl~ng versus distance 
for tuna cytochrome c with E = -2 0 eV. Here p 
= -0.42, corresponding to complex behavior 
(C) Logar~thm of the effect~ve coupling versus 
distance for tuna cytochrome c with E = -4.0 
eV Here p = -0.97, corresponding to exponen- 
tial behavior. 

model have been reported (7). The donor- 
acceDtor distances are determined from the 
crystal structure (15), and the effective 
coupling is computed with the inverse ma- 
trix technique. We adopt a one-electron 
parameter set based on that of Beratan and 
Onuchic (5, 16) and vary the tunneling 
energy to analyze effective coupling behav- 
ior. This is analogous to varying a in the 
1D model (see Eq. 3). 

For cytochrome c, sharp transitions of 
the correlation coefficient p as a function of 
tunneling energy, similar to those predicted 
analytically for the 1D model system, occur 
at about E = -3.45 and 2.03 eV for the 
present choice of parameters (Fig. 2A). 
Typical plots of the effective coupling ver- 
sus distance for complex and exponential 
behavior appear in Fig. 2, B and C, respec- 
tively. Figure 2B is analogous to figure 1 in 
(7), which represents an equivalent calcu- 
lation with a single-pathway approach (1 7). 
It is clear from Fie. 2B that there is a wide - 
variation in logHDA at a given distance. 
This variation demonstrates that the effec- 
tive coupling is sensitive to the intervening 
material in the complex regime. The con- 
trasting, essentially exponential variation 
of HDA is evident in Fig. 2C. 

For the ID model, the minimum and 
maximum eigenvalues for the bridge 
. Hamiltonian are & 2P. When the magni- 
tude of the donor-bridge energy difference 
exceeds 2P, the effective coupling is ex- 
ponential, and when the donor-bridge en- 
ergy difference is less than 2P, the effec- 
tive coupling is complex. Thus, the min- 
imum and maximum values of the bridge 
eieenvalues define the transition between " 

exponential and complex behavior. One 
reaches the same conclusion by computing 
the spectrum for cytochrome c, where the 
minimum and maximum eigenvalues [with 
use of the single-orbital parameter set 
determined as in (16)] are -3.446 and 
2.028 eV, respectively; these values cor- 
respond exactly to the edges of the transi- 
tion (Fig. 2A). Indeed, our results are 
consistent with notions derived from band 
structure in crystals ( lo),  for which it has 
been shown that the off-diagonal matrix - 
elements of the Green's function at ener- 
gies not within a band decay exponentially 
with distance. 

The parameter that controls the rate of 
exponential decay, generally denoted P (4) 
(not to be confused with the P in Huckel 
theory, used in Eq. 3 and elsewhere), de- 
pends sensitively on the tunneling energy. 
An explicit analytic relationship can be 
derived for the ID model (6). For tuna 
cytochrome c, the numerical calculations 
indicate that Dutton's value of B -1.4 k' 
(4) corresponds to a difference between the 
tunneling energy and a typical bridge ener- 
gy on the order of 2 to 5 eV. These values 

are clearly in the exponential regime. For 
values of the tunneling energy in the com- 
plex regime, the effective coupling may stay 
constant or even increase with increasing 
donor-acceptor distance; thus, the expo- 
nential decay parameter p is not rigorously 
defined. Nevertheless. almost all ex~er i -  
mental studies of electron transfer report a 
value for B: small values (less than 1 k') . , 
may indicate complex behavior. ~ e c e n i  
experiments on viologen-quinone mole- 
cules (18), myoglobin (3, and cytochrome 
c (1 9) are possible examples. 

The tunneling energy is an essential 
parameter in determining the nature of the 
distance de~endence. Unfortunatelv. the , , 

tunneling energy is difficult to determine 
quantitatively because it is sensitive to sol- 
vation effects. In the Huckel model, the 
energies depend on the ionization energies, 
and gas phase values can be obtained (20). 
In biological systems, however, both water 
and the surrounding ~ ro te in  act as "sol- - A 

vent" for the donor and acceptor moieties 
(21), as well as for the bridge elements. 
Although solvent effects complicate theo- 
retical analysis, it may be possible to adjust 
the relevant energies experimentally by al- 
tering the molecule (point mutations) or 
applying external electric fields. Such ex- 
periments would provide information that 
could help determine which regime is ap- 
plicable for a given system. 

The present analysis provides a possible 
resolution to the controversv mentioned in 
the introduction. On one side of the debate 
are Onuchic, Beratan, Gray, and co-work- 
ers (5), who present theory and experi- 
ments on modified cytochromes showing 
that HDA is sensitive to the bridging mate- 
rial. On the other side of the debate is 
Dutton's group (4), which finds that HDA is 
determined by an exponential function of 
the donor-acceptor distance. It is possible 
that the behavior considered by the two 
groups corresponds to the different regimes 
described here. This is made plausible by a 
recent Huckel treatment of ruthenated 
myoglobin, where Siddharth and Marcus 
(22) suggest a 0.67-eV difference between 
the tunneling energy and typical bridge 
energies. Such a small energy difference 
corresponds to the complex distance depen- 
dence, which is found both in calculations 
and in experiments (1 9). It is interesting to 
note that in the exponential regime, the 
effective coupling depends only weakly on 
the details of the bridging material; so by 
operating in this regime, nature builds in 
tolerance against point mutations and other 
perturbations (6). 
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Growth of High Aspect Ratio Nanometer-Scale 
Magnets with Chemical Vapor Deposition and 

Scanning Tunneling Microscopy 
Andrew D. Kent,* Thomas M. Shaw, Stephan von Molnar, 

David D. Awschalom 
A combination of chemical vapor deposition and scanning tunneling microscopy tech- 
niques have been used to produce nanometer-scale, iron-containing deposits with high 
aspect ratios from an iron pentacarbonyl precursor both on a substrate and on the tunneling 
tip itself. The structure and composition of the resulting nanodeposits were determined by 
transmission electron microscopy and high spatial resolution Auger electron spectroscopy. 
Either polycrystalline, relatively pure, body-centered-cubic iron or disordered carbon-rich 
material can be deposited, depending on the bias conditions of the tip sample junction and 
the precursor pressure. Two mechanisms of decomposition are inferred from the growth 
phenomenology. 

T h e  ability to control matter on decreasing 
length scales is expected to lead to signifi- 
cant scientific and technological advances. 
The scanning tunneling microscope (STM) 
offers the ultimate spatial resolution possi- 
ble-manipulating materials down to the 
atomic level (I) .  For example, single atoms 
have been positioned on specific metal and 
semiconductor surfaces ( 2 4 ) .  The creation 
of interesting nanostructures requires the 
further ability to deposit a variety of differ- 
ent materials on substrates and to create 
clusters of atoms. Combining chemical va- 
por deposition (CVD) techniques with the 
STM offers great promise in this regard. 
Metal organic precursors are commercially 
available for manv elements because of 
their widespread use in thin film technology 
(5). Furthermore, the local interactions 
present in an STM have already proved 
capable, in initial investigations (6-1 O), of 
decomposing certain precursors to leave 
behind metallic deposits. An additional 
and important challenge in such growth 
studies is knowing the nature of the result- 
ing material. In general, it is difficult to 
characterize STM deposits by other micro- 
scopic or analytical techniques because of 
the small quantity of matter present (I I). 
Although STM images provide an idea of 
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the topology of small structures, it is not 
possible to discern their composition or 
crystalline phase. 

We present here the results of an inves- 
tigation of the growth of nanometer-scale 
iron deposits with a combination of CVD 
and STM techniques. In this study we were 
able to deduce the crystalline phase and 
composition of an STM deposit using trans- 
mission electron microscopy (TEM) and 
high-resolution Auger electron spectrosco- 
py (AES). This leads to an understanding 
of the growth phenomenology and control 
of the resulting materials structure, compo- 
sition, and shape on a nanometer scale. 
Specifically, we can control depositions on 
either the substrate or the tip by varying the 
growth conditions. We demonstrate the 
ability to produce high aspect ratio iron 
filaments with diameters less than 10 nm 
and asDect ratios greater than 80. Further- - 
more, by varying the bias conditions and 
precursor pressure we can form either amor- 
phous or polycrystalline material. Filaments 
can be directly deposited on the apex of a 
silicon tip, which is part of a microfabri- 
cated silicon cantilever used in scanning 
force microscopy. Such nanodeposits will 
therefore find use in a variety of scanning 
probe microscopy experiments and are ex- 
pected to extend the spatial resolution of 
these techniques. 

We have used a modified commercial 
STM (12) in an ultrahigh vacuum (UHV) 
chamber (5 x lo- ' '  torr) designed to 
handle reactive gases over a wide range of 
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