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Unidirectional Coupling of Gap Junctions 
Between Neuroglia 

Stephen R. Robinson,* Edith C. G. M. Hampson, Mark N. Munro, 
David I. Vaney 

Gap junctions permit the passage of ions and small molecules between cells, thereby 
providing a basis for direct intercellular communication. In the rabbit retina, the low 
molecular weight dyes Lucifer yellow and biocytin passed readily from astrocytes into 
adjacent astrocytes, oligodendrocytes, and Muller cells. However, the dyes rarely 
passed from either oligodendrocytes or Muller cells into astrocytes. Unidirectional pas- 
sage of dye suggests the presence of an asymmetric barrier to the movement of 
molecules through heterologous gap junctions and indicates the potential for a hierarchy 
of command between interconnected cells. 

M a n y  vertebrate and invertebrate cells are 
connected by "gap junctions" that provide 
a route for intercellular communication 
(I). Cellular coupling can be revealed by 
the intracellular injection of a membrane- 
impermeant dye of low molecular weight, 
such as Lucifer yellow (457 daltons) (2) or 
biocytin (373 daltons) (3, 4). The assump- 
tion that molecules can pass through gap 
junctions equally in both directions was 
challenged by Flagg-Newton and Loewen- 
stein's (5)  experiments on cocultures of 
Balblc and B fibroblasts. They reported that 
dye injected into B cells diffused readily 
into neighboring Balblc cells but that little, 
if any, dye transferred from injected Balblc 
cells into neighboring B cells. This remark- 
able finding has not been replicated, and its 

functional significance is unclear because 
the two cell lines are unlikely to encounter 
each other outside a petri dish. We now 
report that asymmetric diffusion of dye oc- 
curs between different types of neuroglia 
(astrocytes, oligodendrocytes, and Muller 
cells) in the myelinated band of the intact 
rabbit retina (6). 

Retinae from adult rabbits were stained 
with Hoechst 38317 (7), and labeled peri- 
axonal astrocytes (8) were injected with 
Lucifer yellow (9). We photographed 91 
periaxonal astrocytes that had been inject- 
ed, and in every instance dye had diffused 
into the majority (>90%) of stained cells 
within their dendritic fields (mean number 
of coupled cells, 70; range, 20 to 200; Fig. 
1, A and B). Many of these coupled cells 
(50 to 70%) were neighboring periaxonal 

Vision, Touch, and Hearing Research Centre, Depart. astroc~tes, whereas the remainder were el- 
ment of Physiology and Pharmacology, University of ther oligodendr~c~tes (Fig. l, E and F) or 
Queensland, ~r isbane,  Australia 4072: astrocytes belonging to other classes. In 
*To whom correspondence should be addressed. addition, 58 periaxonal astrocytes were in- 

jected with biocytin (10). They were cou- 
pled to 30 to 300 cells (mean number of 
coupled cells, 156; Fig. lG) ,  of which 50 to 
70% were periaxonal astrocytes, and the 
remainder were either oligodendrocytes or 
astrocytes from other classes. 

Some periaxonal astrocytes were also 
coupled to Muller cells (radial glia): 10 of 
the 91 injected with Lucifer yellow were 
coupled to 1 to 12 Muller cells (mean 
number of coupled cells, 5), whereas 40 of 
the 58 filled with biocytin were coupled to 
1 to 20 Muller cells (mean number of 
coupled cells, 3). These Muller cells could 
be found up to 250 p,m from the soma of an 
injected astrocyte. Because the lateral pro- 
cesses of rabbit Muller cells are only about 
25 p,m long (I l ) ,  such labeling must be due 
to the diffusion of dye through gap junc- 
tions between astrocytes and Muller cells 
rather than to inadvertent impalement of 
Muller cell processes. We injected more 
than 100 Muller cells with Lucifer yellow or 
biocytin, but they were never coupled to 
other Muller cells or to astrocytes. 

Oligodendrocytes were identified by 
their characteristic morphology (12) (Fig. 
1, C, D, F, and H) and by their absence of 
immunoreactivity to glial fibrillary acidic 
protein. Approximately half of the stained 
nuclei at the margin of the myelinated band 
were oligodendrocytes. Of the 92 oligoden- 
drocytes injected with Lucifer yellow, 90 
exhibited no dye diffusion into adjacent 
cells (Fig. 1, C and D). The remaining 2 
oligodendrocytes were surrounded by 8 to 
10 lightly labeled oligodendrocytes and 
Muller cells. Similarly, 49 of the 70 oligo- 
dendrocytes injected with biocytin were not 
coupled. The remaining 2 1 oligodendro- 
cytes were surrounded by lightly labeled 
oligodendrocytes and astrocytes (mean 
number of coupled cells, 49; range, 1 to 
150; Fig. 1H). 

Our results show that, when periaxonal 
astrocytes are injected with Lucifer yellow 
or biocytin, most of the nearby oligoden- 
drocytes and some Muller cells fill with dye. 
By contrast, when oligodendrocytes are in- 
jected, few (if any) of the nearby astrocytes 
show coupling. Furthermore, when Muller 
cells are injected, nearby astrocytes are 
never labeled with dye (Fig. 2).  

It is conceivable that the unidirectional 
spread of dye is attributable simply to dam- 
age to the oligodendrocytes (and Muller 
cells) caused by the injection procedure and 
consequent closing of their gap junctions. 
To investigate this possibility, oligodendro- 
cytes were injected with either Lucifer yel- 
low or biocytin, and nearby astrocytes were 
immediately injected with the other dye 
(1 3). Of the 23 successful fills, 2 1 oligoden- 
drocytes were double-labeled. In these 21 
cases, dye had passed from astrocytes into 
oligodendrocytes after the oligodendrocytes 
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blue-violet excitation (D). 
(E and F) Periaxonal astrocyte filled with Lucifer yellow and viewed under blue-violet light (E). A 
dye-coupled soma (arrow) was subsequently injected. Dye did not spread from this oligodendro- 
cyte (F) into any other cells. (0) A periaxonal astrocyte (arrow) filled with biocytin. (H) A weakly 
coupled oligodendrocyte that has been filled with biocytin. Bar, 50 pm. 

Fig. 2. Summary of the dye diffusion 
we have observed among three 
types of retinal glia. The solid arrows 
represent coupling that occurs con- 
sistently, and the dashed arrows rep 
resent coupling that is sporadic. The 
proportions of injected cells that dis- 
played coupling with Lucifer yellow 
(LY) or biocytin (B) are indicated. 

Periaxonal 
astrocytes 

LY: 100% 
B: 100% 

I 
I 
I LY: 11% LY:lOO% LY:OYo i B: 69% B: 100% I 8: 26% 

- cells 

I ' - 
4 

k., 1 LY:2% 
I 0:  30% 

LY: 2% '. 
B: 16% 8\ i 

Oligodendrocytes 

had already been injected, and therefore we 
can rule out the possibility that the unidi- 
rectional coupling is a methodological arti- 
fact. 

Another trivial explanation of our re- 
sults is that oligodendrocytes in intact rab- 
bit retina may establish only a small number 
of gap junctions with each other but are 
nonetheless coupled in an extensive net- 
work. Consequently, dye passing from an 
injected oligodendrocyte into that network 
may be diluted below detectable levels. To 
investigate this possibility, we placed scal- 
pel lesions at the edge of the medullary rays 
to isolate small groups of oligodendrocytes 
(n < 10) from the rest of the glial network. 
Seven oligodendrocytes isolated in this way 
were injected with Lucifer yellow, but none 
showed any indication of coupling. Thus, 
our results cannot be explained in terms of 
asymmetric dye dilution. 

Loewenstein (14) noted that a condition 
needed for asymmetric dye dihsion is that 
different classes of channels must be present 
on either side of the gap junction. Consis- 
tent with this hypothesis, astrocyte gap 
junctions contain the protein connexin 43, 
whereas oligodendrocyte gap junctions con- 
tain connexin 32 (1 5) .  Furthermore, con- 
nexin 43 imrnunoreactivity is restricted to 
the astrocyte side of gap junctions between 
astrocytes and oligodendrocytes ( 1  6). 

A second condition is that the perme- 
ability of the difTerent classes of channels 
must differ. Loewenstein proposed that 
asymmetric dihsion of dye between cells is 
due to "an asymmetric free-energy barrier 

Astrocyte Oiigodendrocyte 

Fig. 3. Model of the unidirectional diffusion of 
dye between coupled oligodendrocytes and 
astrocytes, based on differences in connexon 
pore diameter. Like a fish in a fish trap, dye 
molecules (black circles) can pass from an 
astrocyte to an oligodendrocyte (A) but not 
back in the other direction (B). Connexons are 
shaded black and the direction of dye flow is 
indicated by arrows. 
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for permeant movement in the channel 
that is higher in one direction than in the 
other" (14, p. 860). Loewenstein suggested 
that the asymmetry could be ~rovided by 

fer of molecules provides the potential for a 
hierarchy of command. 
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fB#f TECHNICAL COMMENT ic CMI. Peripheral blood mononuclear cells 
from the former group released measurable 
amounts of interleukin-2 (IL-2) (which 

Protection from HIV Infection or AIDS? 

O n e  of the major goals of AIDS research is 
the development of an efficacious vaccine 
providing broad, long-lasting protection 
against human immunodeficiency virus- 
type 1 (HIV-1) infection. In the past, for 
induction of protective immunity, viral 
vaccine development aimed to elicit hu- 
moral immunity (that is, to produce strong 
neutralizing antibodies) that would protect 
one from infection. In contrast, cellular 
immunity was in principle thought to be 
associated with recovery from viral disease 
and convalescence. In a provocative Per- 
spective, Jonas Salk and his colleagues hy- 
pothesize that a protective vaccine against 
HIV-1 infection should induce cellular 

rather than humoral immunity ( I ) .  Not 
only do they propose that cell-mediated 
immunity (CMI) can protect one from 
HIV-1 infection, but they also suggest that 
antibody responses are associated with in- 
creased susceptibility to such infection. This 
hypothesis is based on two distinct sets of 
data on the immunology of HIV-1 infec- 
tion, in part published and in part present- 
ed during the IXth International Confer- 
ence on AIDS held in Berlin in June 1993. 

First, Clerici et al. (2) found that a large 
percentage of individuals exposed to HIV-1 
who tested negative for the virus, but a 
small percentage of unexposed or low-risk 
subjects, showed evidence of HIV-1-specif- 

\ , \  

prompts lymphocyte proliferation) when 
stimulated with HIV-1 envelope peptides. 
From six persons who were studied longitu- 
dinally, two eventually became seropositive 
for HIV-1 antibodies. In subsequent stud- 
ies, larger groups were included, and cells 
from up to 50% of the individuals respond- 
ed with IL-2 production in the HIV-1 
peptide assay (3). Furthermore, macaque 
monkeys inoculated with low doses of sim- 
ian immunodeficiency virus (SIV) frequent- 
ly had CMI responses that were detectable 
up to 64 weeks after inoculation, yet they 
did not produce SIV-specific antibodies or 
show evidence of infection (4). In contrast, 
all but one of the animals that received 
higher doses of virus became infected, test- 
ed seropositive, and showed no CMI re- 
sponse against the SIV peptides 64 weeks 
after infection. Salk et al. conclude from 
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