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Rice Prolamine Protein Body Biogenesis: 
A BiP-Mediated Process 

Xingxiang Li,* Yujia Wu, Dian-Zhong Zhang, Jeffrey W. Gillikin, 
Rebecca S. Boston, Vincent R. Franceschi, Thomas W. Okitat 

Rice prolamines are sequestered within the endoplasmic reticulum (ER) lumen even 
though they lack a lumenal retention signal. Immunochemical and biochemical data 
show that BiP, a protein that binds lumenal polypeptides, is localized on the surface of 
the aggregated prolamine protein bodies (PBs). BiP also forms complexes with nascent 
chains of prolamines in polyribosomes and with free prolamines with distinct adenosine 
triphosphate sensitivities. Thus, BiP retains prolamines in the lumen by facilitating their 
folding and assembly into PBs. 

Rice seeds accumulate two types of storage 
proteins common to all seeds, glutelins 
(globulin-like) and prolamines. Glutelins 
are transported into vacuoles through the 
Golgi complex, whereas prolamines aggre- 
gate within the ER lumen ( I ) .  .The mRNAs 
that encode glutelia and prolamines are 
localized to morphologically distinct ER 
membranes in endosperm cells, thus con- 
tributing to the asymmetric protein distri- 
bution (1, 2). Prolamine transcripts are 
enriched on the ER that delimits the pro- 
lamine PBs, whereas glutelin rnRNAs pre- 
dominate on the cistemal ER (2). 

Most proteins localized to the ER lumen 

formation may be a consequence of the 
high ionic strength environment of the ER 
lumen inducing aggregation of the hydro- 
phobic protein (4). Alternatively, PB for- 
mation may be dependent on specific cellu- 
lar factors. One candidate for such a factor 
is BiP, a cognate of the 70-kD heat shock 
protein (Hsp70) located in the ER lumen. 
BiP functions as a molecular chaperone to 

Flg. 1. (A and B) Cosed- 
imentation of BiP (B) and 
prolamines (P). The de- 
tergent extract (9, 10) 
was clarified of ribo- 

have the amino acid seouence Lvs(His)- somes by centrifugation I - - -, - .- ---, 
Asp-Glu-Leu [(K(H)DEL]' (or a related se- at 200s000g for '' 
quence) near their COOH-terminus, which The resulting superna- 

tant (5 mg of protein) serves to retrieve these proteins from an was then incubated at early Golgi compartment (3). Prolamines, 250C for 20 min in the 
however, lack this sequence. Prolamine PB presence of 10 u of aDv- 
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facilitate the proper folding or assembly of 
newly synthesized polypeptides (3, a pre- 
requisite for subsequent protein transport 
through the secretory pathway (6). Here, 
we show that BiP retains prolamines within 
the ER lumen by promoting the folding and 
assembly of prolamines into PBs. 

We used antibody to maize BiP to quan- 
tify amounts of BiP in subcellular fractions 
from developing rice seeds (7). A 72-kD 
protein, similar in size to the maize BiP, was 
detected in subcellular fractions enriched 
for cistemal ER and PBs (2). At least 90% 
of the BiP present in endosperm cells was 
observed in the PB fraction and accounted 
for 2 to 4% of the total protein in this 
fraction (8). Immunocytochemical localiza- 
tion studies revealed that BiP was associat- 
ed with the surface of prolamine PBs and 
was rarely detected within the cistemal ER, 
even those connected to PBs (8). These 
quantification and localization results indi- 
cate that BiP is asymmetrically localized in 
the ER lumen and is primarily associated 
with prolamine PBs. 

To determine if BiP interacts with pro- 
lamines during translocation of the nascent 
chains across the ER membrane and subse- 
quent folding and assembly of mature poly- 
peptides into PBs, we extracted the PBs 
with detergent (9, 10) to remove the de- 
limiting ER membrane (Table 1). Thirty 
percent of the BiP was released by the 
detergent treatment and presumably locat- 
ed within the lumen (Table 1). Mature 
prolamines (14 kD) and BiP in the deter- 
gent extract cosedimented in a sucrose den- 
sity gradient (Fig. lA), which suggests that 
these proteins were bound to one another. 
These complexes ranged in size from slight- 
ly larger than the monomeric BiP (72 kD) 
to about 400 kD (Fig. 1A). Incubation of 

- --- -I "I- I 
rase (A) or 5 mM ATP (B) 1 , , , , , , , 

and then centrifuged on Fract'O" 8 12 
a 5 to 20% sucrose den- 
sity gradient at 200,0009 for 23 hours at 4°C. Fractions (0.5 ml) were collected and then subjected 
to trichloroacetic acid precipitation followed by immunoblot analyses with anti-BiP and anti- 
prolamine. Peroxidase (PX, 40 kD), lactic dehydrogenase (LD, 137 kD), pyruvate kinase (PK, 237 
kD), and urease (UR, 480 kD) were cosedimented with the rice samples; the locations of their 
enzyme activity peaks are indicated by the arrows. Pe, pellet. (C) Coimmunoprecipitation of BiP and 
prolamine. The postribosomal supernatant of the detergent extract (1 mg of protein) was incubated 
at 4°C for 4 hours with 25 pg of anti-prolamine (lanes 1 and 2) or preimmune serum (lanes 3 and 4), 
followed by agarose-protein A in the presence of 10 units of apyrase or 5 mM ATP, as indicated. 
Subsequent manipulations were as described (21). The precipitated protein was analyzed by 
immunoblot with anti-BiP and anti-prolamine. 
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Anti-BiP Anti-prolamine 
a b  c a b c a  

Fig. 2. (A and B) Cosedimentation of BiP 
and polyribosomes. The salt extract (previous- 
ly frozen) was incubated at 25OC for 20 min 
with distilled H,O [(A) and row 1 of (B)], 1 mM 
puromycin (row 2), 5 mM MgATP (row 3), or 
0.1 mg bovine pancreatic ribonuclease (row 
4), followed by sucrose density gradient cen- 
trifugation (13). Protein samples in each frac- 
tion were collected by trichloroacetic acid 
precipitation and then analyzed by immuno- 
blot with anti-BiP (rows 1 through 4). Shown in 
(A) is the polyribosome profile of the mock 
control in (B), row 1. The arrow and arrowhead 
in (A) represent the direction of sedimentation 
and the location of monosomes, respectively. 
(C) Polyribosomes were immunoprecipitated 
(14) with antibody to maize BiP (anti-BiP), 
anti-prolamine, or preimmune serum (Pre.) in 
the absence (a) or presence of 1 mM puromy- 
cin (b) or 5 mM ATP (c). The RNA in the 
precipitate was extracted and subjected to 
dot blot analyses with a prolamine comple- 
mentary DNA probe as described (2). 

the detergent extract with adenosine tri- 
phosphate (ATP) before centrifugation 
eliminated the faster sedimenting complex- 
es (Fig. 1B). In contrast, treatment with 
ATP-7-S, the nonhydrolyzable analog of 
ATP, did not affect the sedimentation of 
BiP or prolamines (8). We presume that 
this reflects dissociation of the BiP-prola- 
mine complexes catalyzed by the adenosine 
triphosphatase function of BiP (3). Anti- 
body to prolamines coprecipitated both BiP 
and mature prolamines from the detergent 
extract in the absence, but not in the pres- 
ence, of  ATP (Fig. 1C). Together, these 
data indicate that BiP and mature prola- 
mines formed ATP-sensitive complexes. 

Detergent solubilization of PB mem- 
branes released only 20 to 25% of all poly- 
ribosomes in the crude PB fraction (I I); the 
rest remained associated with the PB (Table 
1). Puromycin did not dissociate these poly- 
ribosomes from the detergent-treated PBs, 
although nascent prolamine chains were 
released (8). These polyribosomes, howev- 
er, were readily released from the PBs by 
solutions of moderate ionic strengths (8, 
12). As determined by sucrose density gra- 
dient centrifugation (1 3), BiP cosedi- 
mented with the polyribosomes (Fig. 2, A 
and B, row 1). A similar sedimentation 
pattern was observed when the fractions 
were analyzed with antibody to HDEL (8). 
Pretreatment with puromycin had no effect 
on the polyribosome profile, but the 
amount of BiP in complexes was reduced 
(Fig. 2B, row 2), which indicates that BiP 
interacted with the nascent peptides. Pre- 
treatment with ATP had less effect on the 
amount of BiP (Fig. 2B, row 3) or on the 
polyribosome sedimentation profile (8). As 
a control, ribonuclease treatment comi 
pletely disrupted polyribosomes and, conse- 
quently, eliminated the fast-sedimenting 
BiP species (Fig. 2B, row 4). We conclude 
that most of  the BiP in the salt extract was 
associated with the polysomal nascent poly- 
peptide chain through an ATP-insensitive 
interaction. 

To  determine whether BiP interacted with 
the prolamine nascent polypeptide chain, we 

Table 1. Distribution and properties of BiP in PB fractions. Crude PB (containing both BiP and 
polysomes) was sequentially extracted with Triton X-100 (TX-100) and salt, resulting in three 
subfractions (9, 10). The amount of BiP was estimated by immunoblot (3, whereas polysomes were 
isolated and quantified as described (1 1). 

Distribution (%) BiP 
Subfractions complex ATP 

BiP Polysome with sensitivity 

TX-100 30 2 5 22.5 + 2.5 Mature Lumen Yes 
extract of prolamine 
crude PB 

Salt extract of 45 + 5 77.5 2 2.5 Nascent Polysomes No 
TX-100- prolamine 
treated PB 

Cell-free PBs 25 2 5 0.0 PB PB surface Yes 
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incubated the purified polyribosomes with an- 
tibody to BiP (anti-Bi), antibody to prola- 
mine (anti-prolamine), or control antiserum 
(14). The RNA in the immunoprecipitate 
was extracted and then analyzed by Northern 
(RNA) blot for the presence of prolamine 
rnRNA. The BiP- or prolamine-specific anti- 
serum precipitated about 50% of prolamine 
polyribosomes (15) even in the presence of 
ATP (Fig. 2C). The inhibitory effect of puro- 
mycin on the immunoprecipitation of prola- 
mine polysomes by anti-BiP (Fig. 2C) also 
indicated that BiP was complexed to the 
nascent prolamine polypeptide. 

A r o o ,  

0 5 10 15 20 

Time (min) 

Flg. 3. Time course of BiP release from cell-free 
(naked) PBs. The PB samples (5 mg of protein) 
were incubated at 25°C in the presence or 
absence of 0.1 mM ATP or ATP-y-S, followed 
by centrifugation at 12,0009 for 10 min. (A) The 
amount of BiP released into the supematant at 
various time points as quantified by immunoblot 
(7). (8) Protein profiles. The protein (10 pg) 
released by the 45-min ATP treatment of naked 
PBs was resolved on an SDS-polyacrylamide 
gel and then stained by Coomassie blue (lane 
4). For comparison, 50-pg extracts of total seed 
(lane I) ,  PBs (lane 2), or microsomal mem- 
branes enriched in cistemal ER (lane 3) were 
also included. B and P are as in Fig. 1. 



Although a majority of the BiP in the 
enriched PB fraction was released by deter- 
gent and salt, about 25% remained associ- 
ated with the protein granules (Table 1). 
The ATP (but not ATP-y-S) released al- 
most all of this tightly bound BiP (Fig. 3A). 
Two major polypeptides with electropho- 
retic mobilities identical to BiP and prola- 
mine (16) were evident in  ATP-released 
products (Fig. 3B). The ATP-dependent 
dissociation of BiP from the PBs suggests 
that BiP has an essential role in the assem- 
bly of prolamines onto the PB and would 
account for the localization of rice BiP on 
the surface of, but not within, the PBs (8). 

The tight binding of BiP-prolamine com- 
plexes is likely due to the preference of BiP 
for aliphatic amino acids (1 7), residues en- 
riched in prolamines (1 8). The higher affin- 
ity of BiP for prolamines than for glutelins 
may explain the localization of BiP to the 
prolamine PBs but not to the cistemal ER 
where glutelins are synthesized (2). Howev- 
er, BiP may help the folding and assembly of 
glutelins in the ER before they are transport- 
ed to the Golgi complexes. The association 
of BiP with glutelins is probably transient. 

We propose that prolamine PB formation 
is a sequential process mediated by BiP. BiP 
binds to the nascent prolamine peptide as it 
emerges through the ER membrane. This 
initial complex, which resembles the inter- 
action between cytosolic Hsp7O and nascent 
polypeptides (1 9), maintains the polypep- 
tide chain in  a competent state for subse- 
quent assembly onto the PBs. The comple- 
tion of protein synthesis results in the release 
of the prolamine-BiP complexes into the ER 
lumen. These protein complexes then inter- 
act with the PB surface, and prolamine 
molecules are dissociated from BiP and as- 
sembled onto the PB surface at the expense 
of ATP. The dissociated BiP is then recy- 
cled. The PB formation would be initiated 
when a critical concentration of BiP-prola- 
mine complexes is accumulated in the ER 
lumen and BiP-mediated aggregation of the 
prolamine polypeptides begins. This in- 
volvement of BiP in prolamine PB formation 
is also supported by its elevated amounts in 
the PBs of maize mutants defective in zein 
accumulation (20). 
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Formation and Hydrolysis of Cyclic ADP-Ribose 
Catalyzed by Lymphocyte Antigen CD38 
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Frances E. Lund, Leopoldo Santos-Argumedo, 

R. M. E. Parkhouse, Timothy F. Walseth, Hon Cheung Lee* 
CD38 is a 42-kilodalton glycoprotein expressed extensively on B and T lymphocytes. CD38 
exhibits a structural homology to Aplysia adenosine diphosphate (ADP)-ribosyl cyclase. 
This enzyme catalyzes the synthesis of cyclic ADP-ribose (cADPR), a metabolite of 
nicotinamide adenine dinucleotide (NAD+) with calcium-mobilizing activity. A complemen- 
tary DNA encoding the extracellular domain of murine CD38 was constructed and ex- 
pressed, and the resultant recombinant soluble CD38 was purified to homogeneity. Soluble 
CD38 catalyzed the formation and hydrolysis of cADPR when added to NAD'. Purified 
cADPR augmented the proliferative response of activated murine B cells, potentially 
implicating the enzymatic activity of CD38 in lymphocyte function. 

C ~ 3 8  has been used predominantly as a late the growth of lymphocytes in  the pres- 
phenotypic marker of different subpopula- ence of other stimuli such as interleukin-4 
tions of T and B lymphocytes (1, 2).  An- (IL-4) (3, 4) or IL-2 and accessory cells (2). 
tibodies to CD38 (anti-CD38) can stimu- Anti-CD38-induced proliferation of mu- 
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