
These observations provide direct evi- 
dence of the coupling between 10 and the 
Jovian ionosphere, marking the (localized) 
impact of 10-accelerated charged particles 
in Jupiter's ionosphere. Further observa- 
tions of the IFT foot may provide additional 
information regarding the interaction of 10 
and Jupiter's magnetosphere, the source 
location and generation of DAM, and Ju- 
piter's magnetic field. 
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Dependence of Calmodulin Localization in the 
Retina on the NINAC Unconventional Myosin 

Jeffery A. Porter, Mujun Yu, Stephen K. Doberstein, 
Thomas D. Pollard, Craig Montell 

Calmodulin is a highly conserved regulatory protein found in all eukaryotic organisms 
which mediates a variety of calcium ion-dependent signaling pathways. In the Dro- 
sophila retina, calmodulin was concentrated in the photoreceptor cell microvillar struc- 
ture, the rhabdomere, and was found in lower amounts in the sub-rhabdomeral cyto- 
plasm. This calmodulin localization was dependent on the NINAC (neither inactivation 
nor afterpotential C) unconventional myosins. Mutant flies lacking the rhabdomere- 
specific p l74 NINAC protein did not concentrate calmodulin in the rhabdomere, whereas 
flies lacking the sub-rhabdomeral p132 isoform had no detectable cytoplasmic calmod- 
ulin. Furthermore, a defect in vision resulted when calmodulin was not concentrated in 
the rhabdomeres, suggesting a role for calmodulin in the regulation of fly phototrans- 
duction. A general function of unconventional myosins may be to control the subcellular 
distribution of calmodulin. 

T h e  intracellular Ca2+ receotor calmodu- 
lin is a primary mediator of Ca2+-depen- 
dent signaling in most eukaryotic cells (I). 
It is among the most highly conserved 
proteins, differing between vertebrates and 
Drosophila in only 3 of 148 amino acids (2). 
Upon binding Ca2+, calmodulin undergoes 
a conformational change rendering the pro- 
tein competent to bind and alter the activ- 
ities of target proteins ( I ) .  Thus, many 
proteins including protein kinases, protein 
phosphatases, ion channels, CaZ+ pumps, 
nitric oxide synthetase, inositol triphos- 
phate kinase, and cyclic nucleotide phos- 
phodiesterase are regulated by intracellular 
CaZ+ concentrations by calmodulin ( I ) .  

The Ca2+ ion plays a central role in 
light adaptation in vertebrate vision and 
may be involved in both adaptation and 
excitation in invertebrate phototransduc- 
tion. Calmodulin could be one of the pri- 
mary mediators of the Ca2+ response in 
phototransduction (3). Vertebrate rod pho- 
torecevtor cells contain calmodulin, which 
might have a direct role in modulating ion 
channels gated by guanosine 3',5'-mono- 
phosphate (cGMP) (4). Ion channels re- 
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quired for invertebrate phototransduction 
may also be regulated by calmodulin. Cal- 
modulin is present in the invertebrate mi- 
crovillar rhabdomeres of photoreceptor 
cells in the crayfish, squid, and blowfly (5). 
Furthermore, Drosophila has a retinal-spe- 
cific calmodulin binding protein, TRP-L, 
which has sequence similarity to the pho- 
toreceptor-specific putative Ca2+ channel, 
TRP (6-8). 

The rhabdomere, the svecialized mi- 
crovillar structure of the invertebrate pho- 
toreceptor, contains rhodopsin and other 
important components in phototransduc- 
tion and is functionally analogous to the 
outer segments of vertebrate rod cells, 
which contain calmodulin. In addition, the 
microvillar rhabdomeres are structurallv 
similar to the calmodulin-rich brush border 
of vertebrate intestinal epithelial cells (9). 
Like the brush borders, rhabdomeres consist 
of highly ordered microvilli composed of 
actin filaments connected to the surround- 
ing plasma membrane by radial links (9). 

The major calmodulin binding protein 
in the intestinal microvilli is an unconven- 
tional myosin called the brush border myo- 
sin I (1 0). Abundant unconventional my- 
osins, NINAC (neither inactivation nor 
afterpotential C) p132 and p174, are found 
in Drosophila photoreceptor cells and con- 
sist of a protein kinase domain joined to a 
region homologous to the myosin heavy 
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Fig. 1. Spatial distribution of calmodulin in the 
adult Drosophila compound eye. The images in 
(A) and (B) are phase contrast and immunofluo- 
rescence images of a 0.5-km longitudinal plastic 
section of an adult eye. Calmodulin was detected 
by indirect immunofluorescence staining with a 
rabbit antibody to calmodulin used as the primary 
antiserum and a goat fluorescein-labeled sec- 
ondary antibody to rabbit. Tissue sections were 
prepared and processed as described (20). The 
specificity of the calmodulin antiserum is shown 
in Fig. 3. Indicated are the lamina (la), medulla 
(m), retina (re), and rhabdomeres (rh). The imag- 
es in (C) and (D) are phase contrast and immu- 
nofluorescence images of cross sections of the 
compound eye stained with an antibody to cal- 
modulin and a fluorescein-labeled secondary an- 
tibody. The Drosophilacompound eye consists of 
800 repeat units referred to as ommatidia. Each 
ommatidium contains 20 cells including eight 
photoreceptor cells. Six of the eight photorecep 
tor cells extend the full depth of the ommatidia and two occupy either the upper or lower portions of 
the ommatidia. Consequently only seven photoreceptor cells are present in any given cross section. 
Two rhabdomeres and a sub-rhabdomeral cell body (cb) are indicated in (D). 

chain head (1 1, 12). The p174 isoform is 
suatiallv restricted to the microvillar rhab- 
domere;, and p132 is restricted to the sub- 
rhabdomeral cytoplasm (1 3). Most uncon- 
ventional myosins bind calmodulin, al- 
though the function of this interaction in 
vivo has not been clarified (1 4). We report 
here that interaction between the NINAC 
unconventional mvosin and calmodulin is 
required for subcellular localization of calm- 
odulin and for phototransduction. 

In Drosophila photoreceptor cells, cal- 
modulin was highly concentrated in the 
rhabdomeres (Fig. 1). The rhabdomeres 
appeared as ribbons of staining extending 
the length of the retina in longitudinal 
sections (Fig. 1, A and B) and as seven 
ovals in each ommatidium in cross sec- 
tions (Fig. 1, C and D). The sub-rhab- 
domeral cytoplasm of the photoreceptor 
cells also stained with antibody to calmod- 
ulin (Fig. ID). We estimate that the 
concentration of calmodulin in the rhab- 

domeres was approximately 0.5 mM (15). 
Two methods were used to examine 

whether the NINAC proteins bind calmod- 
ulin. In the first method, the calmodulin- 
overlay technique, p174 but not p132 bound 
calmodulin. Retinal proteins from wild-type 
and ninaC null flies, ninaCP235, were frac- 
tionated on a polyacrylamide gel, transferred 
to nitrocellulose, allowed partially to rena- 
ture, and probed with 1251-calmodulin. The 
major band detected in this analysis ap- 
peared to be NINAC p174 because it was a 
protein of approximately 170 kD present in 
the lane containing wild-type extracts and 
not in the ninaCP235 lane (Fig. 2A). In a 
second assay with calmodulin-agarose affin- 
ity resin and whole head extracts, we found 
that both NINAC isoforms bound calmod- 
ulin. ,The proteins from crude high-speed 
Supernatants that bound to calmodulin-aga- 
rose were eluted with SDS sample buffer, 
fractionated on a polyacrylamide gel, and 
visualized by staining with Coomassie blue. 

Fig. 2. The NINAC proteins are the major calmodulin A 
binding proteins in the fly retina. (A) Identification of C, z n  

FJ 0 C 

retinal calmodulin binding proteins by the calmodulin- Z 2 
overlay technique (32). Retinal extracts from wild-type - ID; 

(wt) and ninaCPZ3= (ninaC) flies were fractionated on 
an SDS-PAGE (6% gel), transferred to nitrocellulose, - 200 
and probed with 1251-labeled calmodulin in the pres- - -p174 
ence of 0.1 mM CaCI,. The NINAC p174 protein and 

- 116 -p132 position of several protein size markers are indicated. 
(B) Proteins from wild-type fly heads that bound cal- - 97 

modulin-agarose (33). Proteins from a high-speed 
supernatant, prepared from wild-type fly heads, were - 66 

incubated in batch with calmodulin-agarose in the w 

presence of 1 mM EGTA and washed in buffer con- 
taining 1 mM EGTA, and the bound proteins were 
eluted with 2 x SDS sample buffer (33). Proteins remaining in the supernatant (Unbound) and 
proteins that eluted from the calmodulin-agarose with 2 x SDS sample buffer (Bound) were 
fractionated on an SDS-PAGE (6% gel) and visualized by staining with Coomassie blue. The two 
NINAC proteins, p132 and p174, are indicated. 

Two polypeptides the sizes of the NINAC 
proteins were the major calmodulin binding 
proteins identified in this assay (Fig. 2B). 
Both of these bands reacted with a ninuC 
antibody, and neither was detected in the 
calmodulin-agarose assay with ninaCP235 ex- 
tracts. The NINAC p174 and p132 isoforms 
bound calmodulin-agarose in the presence or 
absence of CaZ+; however, p132 required 
Ca2+ for optimal binding (1 6). 

Because the NINAC proteins were the 
major calmodulin binding proteins in the 
retina and are putative motor molecules that 
might play a role in transporting other pro- 
teins in photoreceptor cells, we compared 
the spatial localization of calmodulin in 
wild-type and several ninaC mutants. In 
P [ n i n ~ C ~ ' ~ ~ ]  flies, which express p174 but 
not p132 (1 3), calmodulin was expressed in 
amounts similar to those in wild-type flies 
(Fig. 3). It was concentrated in the rhab- 
domeres, but very little was detected in the 
sub-rhabdomeral cytoplasm (Fig. 4A). In 
P[ninaCA'74] flies expressing p132 but not 
p174 (1 3), calmodulin was expressed at two- 
thirds the wild-type amount (Fig. 3) and 
appeared evenly dispersed throughout the 
cell without strong rhabdomere staining 
(Fig. 4B). 

When both p174 and p132 were absent 
from the photoreceptors, as in ninaCP235 flies, 
the amount of retinal calmodulin was half 
that of wild-type flies and was localized to the 
extracellular central matrix (Figs. 3 and 4C). 
This mislocalization was specific to calmodu- 
lin because the subcellular distribution of an- 
other rhabdomeric protein, rhodopsin (Rhl) , 
was unchanged in ninaCP235 (1 6). The local- 
ization of calmodulin to the central matrix 
was unlikely due to retinal degeneration be- 
cause the localization was assayed in young 
flies that had undergone little degeneration. 
Furthermore, in young re& degenerationc 
(rdgC) mutant flies that have undergone a 
similar degree of subtle retinal degeneration to 
that in young ninaC flies ( I n ,  calmodulin 
localization was indistinguishable from that of 

Fig. 3. The amount of 
calmodulin in the reti- 
nas of wild-type and 
ninaC mutant flies. 
Retinas from wild-type 'I6- 
and P[ninaCd132], P[ni- 60 - 
n a p  74], and ninaCP235 
were dissected, frac- 
tionated by SDS-PAGE 
(14% gel), transferred 21 - - - 
to a polyvinylidene di- 
fluoride (PVDF) mem- 
brane, and probed with an antibody to calmod- 
ulin and subsequently with 1251-labeled protein 
A (34). The positions of protein size standards 
are indicated. The relative concentrations of 
calmodulin in each lane were quantified with a 
Phosphorlmage Analyzer (Molecular Dynamics) 
and storage phosphorscreen. 
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wild-type flies (Fig. 4D). When calmodulin 
was not bound to NINAC and properly local- 
ized, it might have accumulated in the central 
matrix during the normal turnover of the 
photoreceptor cell membrane and contents, 
which involves the shedding of the microvil- 
lar tips (1 8). 

We determined the phenotypic conse- 
quences of disrupting p 174 calmodulin 
binding by mapping and mutating the calm- 
odulin binding site. This analysis focused 
on p174 because it is the only NINAC 
isoform required for wild-type electrophysi- 
ology and morphology (1 3). The calmodu- 
lin binding domain in p174 was mapped by 
two independent approaches. The first ap- 
proach entailed generating random frag- 
ments [300 to 800 base pairs (bp)] of the 
full-length NINAC complementary DNA 
(cDNA), encoding the 1501 amino acid 
p174 protein, and subcloning the random 
fragments into a bacteriophage A expression 
library. The expression library was then 
screened with 1251-calmodulin, and 19 pos- 
itives were identified. Each of the ninaC 
cDNA inserts was then amplified by the 
polymerase chain reaction (PCR), and the 
DNA sequences of the two ends were de- 
termined. All 19 positives mapped to the 
same region of the cDNA encoding the 
myosin head-tail junction (19) (Fig. 5A). 

The second method entailed calmodulin 
overlays and calmodulin-agarose assays with 
mutant p174 polypeptides expressed in 
transgenic flies. These included P[ninaCm] 
and P[ninaCMD] flies, which express stable 
forms of p174 missing the kinase and myo- 
sin domains, respectively (Fig. 5C) (20, 
21). In addition, we generated another 
transformant line, P[ninaCAB], which ex- 
pressed a stable derivative of p174 missing 
the NH,-terminal region of the p174 
tail extending from amino acids 1037 to 
1253 (21) (Fig. 5A). The mutation in 
P[ninaCAB] flies, in addition to truncating 
p174, prevented synthesis of p132. 

The deletion of 2 17 amino acids begin- 
ning at the end of the myosin head region 
in p174 eliminated all detectable calmodu- 
lin binding on calmodulin overlays; howev- 
er, the deletion of the myosin or kinase 
domains did not affect association with 
calmodulin (Fig. 5B). Similar results were 
obtained in solution by the binding of 
extracts, prepared from heads of wild-type 
flies, to calmodulin-agarose and probing for 
the NINAC proteins on a protein immuno- 
blot (Fig. 5C). In wild type, P[ninaCm], 
and P[ninaCMD], the various derivatives of 
p174 bound to calmodulin, whereas the 
truncated large NINAC protein from 
P[ninaCAB] did not (Fig. 5C). The two 
assays demonstrated that the region from 
residues 1037 to 1253 was the only domain 
in p174 required for calmodulin binding in 
vitro. This domain contains two sequences 

of compound eyes (35): (A) P[ni- 
n a p  r32], (8) P[ninaCAr74], (C) 
nir~aC=~~,  and (D) rdgC. Several 
photoreceptor cell rhabdomeres 
and cell bodies as well as the 
central matrix (c) in the extracel- 
lular space of several ommatidia are indicated. 

of approximately 25 amino acids, referred 
to as IQ motifs, found in the calmodulin 
binding region of other unconventional 
myosins and the neuron-specific calmodulin 
binding protein neuromodulin (GAP-43) 
(14, 22). 

Examination of the spatial localization 
of calmodulin in P[ninaCAB] compound eyes 
provided in vivo evidence that the NH2- 
terminal region of the p174 tail is the 
calmodulin binding domain. The 145-kD 
truncated derivative of p174, expressed in 
P[ninaCAB], was restricted to the rhab 
domeres just as in wild-type flies (Fig. 6, A 
and B), but most of the calmodulin in 
P[ninaCAB] ommatidia was in the extracel- 
lular central matrix rather than in the 
rhabdomeres and subthabdomeral cyto- 
plasm (Fig. 6, C and D). The levels of 
calmodulin in P[ninaCAB] retinas were re- 
duced approximately twofold, as was ob- 
served with ninaCP235 (Fig. 6E). 

We used electroretinogram (ERG) re- 
cordings, which measure the responses of 

retinal cells to light, to determine whether 
there was a defect in phototransduction 
associated with P[ninaCAB] flies. In wild- 
type flies, there was a large corneal negative 
response to light followed by a rapid return 
to the dark state upon the cessation of the 
light stimulus (Fig. 7). The large transient 
spike coincident with termination of the 
light pulse, the off-transient, derives from 
activity in the lamina1 portion of the optic 
lobe (23). The response of wild-type flies to 
a second pulse of light was indistinguishable 
from the first (Fig. 7). 

The P[ninaCAB] flies showed an ERG 
phenotype characteristic of the null allele, 
ninaCP235. The features of this defective 
ERG included an abnormally large initial 
response, a significantly reduced off-tran- 
sient, and a slow return to base line upon 
the cessation of the first light pulse (Fig. 7). 
These results indicated that deletion of the 
calmodulin binding domain in p 174 caused 
a defect in phototransduction. 

The P[ninaCAB] flies did not undergo the 

Fig. 5. Mapping of the p174 calmodulin binding domain to the myosin head tail junction. (A) Domain 
structure of p174. The protein kinase and myosin head and tail domains are represented by the 
stippled, black, and striped boxes, respectively. The diagram of p174 is demarcated in amino acids 
(shown below). (B) Mapping of the calmodulin binding domain by the calmodulin-overlay technique. 
Retinal extracts from wild type, P[ninaCKD] (KD), P[ninaCMD] (MD). P[ninaCbB] (AB), and ninaCms 
(P235) were fractionated by SDS-PAGE (6% gel), transferred to nitrocellulose, and probed with 
1251-calmodulin in the presence of 0.1 mM CaCI, (21,32).,The sizes of the wild-type p174 protein and 
the deleted forms in P[ninaCKD] and P[ninaCMD] are indicated in kilodaltons. (C) Binding of 
truncated derivatives of p174 to calmodulin-agarose. Proteins from a high-speed supernatant, 
prepared from wild-type and mutant fly heads, were incubated in batch with calm'odulin-agarose in 
the presence of 1 mM CaCI, (33). The calmodulin-agarose was then washed in buffer containing 1 
mM CaCI,, and the bound proteins were eluted with 2 x SDS sample buffer (33). Unbound proteins 
remaining in the supematant (U) and proteins that bound and were eluted from the calmodulin- 
agarose with 2 x SDS sample buffer (6) were fractionated by SDS-PAGE (6% gel) and transferred to 
nitrocellulose. The NlNAC proteins were visualized by probing with rabbit antisera specific to the pl32 
and pl74 tails (a132 and a1 74) and with 1251-protein A as described (13). The sizes of the wild-type 
and truncated derivatives of p174 and p132 are indicated in kilodaltons. 
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Fig. 6. The P[ninaCdB] flies show 
aberrant calmodulin distribution and 
a reduction in calmodulin protein lev- 
els. (A and B) Indirect immunofluo- 
rescence staining of cross sections 
of wild-type and P[ninaCds] com- 
pound eyes, respectively, with a 
NINAC pl74-specific antibody (13). 
A rhabdomere is indicated (rhl. (C . ,  . 
and D) Indirect immunofluorescence staining of cross sections of wild-type and P[ninaCAs] 
compound eyes, respectively, with a calmodulin-specific antibody. The extracellular central matrix, 
a rhabdomere, and a sub-rhabdomeral cell body are indicated in (C). (E) Protein immunoblot of 
retinal proteins from wild-type and P[ninaCAs] (AB) flies probed with a calmodulin antibody. 

age- and light-dependent retinal degenera- 
tion that characterizes ninaCP235 (1 3). 
Thus, the disruption of the NINAC-calm- 
odulin interaction 'and consequent mislo- 
calization of calmodulin did not cause reti- 
nal degeneration. These results also dem- 
onstrated that a ninaC null ERG phenotype 
can be obtained without causing retinal 
degeneration. Although it is possible that 
the NINAC deletion in P[nimCm1 flies 
may dec t  some function in addition to 
calmodulin binding, the deletion does not 
alter the subcellular distribution of p174 or 
affect the ability of NINAC to maintain the 
rhabdomeres. 

Calmodulin localized in the vertebrate 
rod outer segment may modulate pho- 
totransduction because calmodulin affects 
the affinity of cGMP-gated ion channels for 
cGMP in vitro (4). The high concentration 
of calmodulin in the rhabdomeres is consis- 
tent with a role for calmodulin in mediating 
the CaZ+ signals that are central to the 
invertebrate photoresponse. The inverte- 
brate phototransduction cascade uses Ca2+ 
as the principal messenger for light adapta- 
tion, a feature shared with vertebrate vision 

Fig. 7. Electrophysio- 
logical and morpholog- 
ical phenotype of 
P[ninaCdB] flies. (Top) 
Wild-type, (Middle) ni- 
naCP235, and (Bottom) 
P[ninaCAB] flies were 
anaked bv ERG re- 
cor6ngs a s  described 
in (13). Briefly, the flies -:$&, : 
were dark-adapted for -r C, F 
60 s before being ex- 
posed to two 4-s pulses of bright light separat- 
ed by a 5-s dark adaption. The on-transient was 
typically reduced or absent in these ERGs 
because of limitations in the sampling rate of 
the Maclab analog-digital converter (Division 
of AD1 instruments, Milford, Massachusetts). 
The morphology of wild-type, ninaCms, and 
P[ninaCAB] ornmatidia was assessed by trans- 
mission electron microscopic examination of 
cross sections of compound eyes at a depth of 
30 pm. Retinal degeneration was assessed 
after the flies were maintained for 21 days on a 
12-hour light-12-hour dark cycle. 

(3). The Cat+ ion has also been implicated 
in the excitation step, partly on the basis of 
the phenotype of the phospholipase M e -  
ficient mutant norpA (24) and electrophys- 
iological analyses of trp mutant flies that are 
missing a light-activated Ca2+ current (8). 

Calmodulin has several potential roles 
in Drosophila vision because it activates the 
in vitro activities of various protein kinases, 
channels, cyclases, and phosphodiesterases 
in other signaling systems. Calmodulin may 
modulate ion channel activity in the fly eye 
as it appears to in vertebrates. In addition, 
calmodulii might regulate adenylyl cyclase 
in the retina because type I calmodulin- 
sensitive adenylyl cyclase is expressed in the 
vertebrate retina (25). One potential role 
for rhabdomeric calmodulin is to regulate 
p174 function. Alternatively, the calmod- 
ulin could translocate from p174 to other 
rhabdomeric proteins as part of a mecha- 
nism to regulate their activities. Calmodu- 
lin could also make up a Cat+ buffering 
system within the rhabdomere. 

Because neuronal degeneration is associ- 
ated with defective Ca2+ homeostasis, it has 
been suggested that Ca2+ binding proteins, 
such as calmodulin, may prevent degenera- 
tion in certain neuronal cells (26). Howev- 
er, the decrease in rhabdomeral calmodulin 
concentration in the ninaC mutant 
P[ninaCm] did not lead to the degeneration 
of the photoreceptors. Therefore, either 
there was not a large increase in free Ca2+ 
levels in P[ninaChB] rhabdomeres or an in- 
crease in free Ca2+ does not cause degener- 
ation in photoreceptor cells. Previous muta- 
tional analyses have suggested that the p174 
protein has multiple functions in photore- 
ceptor cells (20). One of these roles could be 
to control the subcellular localization of 
calmodulin in the photoreceptor cells. 

In addition to NINAC, other proteins 
may transport calmodulin, retain it, or both 
in various subcellular locations. .The neu- 
ron-specific calmodulin binding protein 
neuromodulin (GAP-43) has been pro- 
posed to localize calmodulin at specific sites 
within neurons (27). Brush border myosin 
I, the major calmodulin binding protein of 
the brush border, is localized to the micro- 
villi of intestinal epithelial cells where the 

calmodulin concentration is approximately 
0.6 mM (1 0, 28). The Saccb~umyces cere- 
visiae unconventional myosin MY02 is re- 
quired for bud site formation and subse- 
quent cell division (29). Calmodulin local- 
izes almost exclusively to the bud site in 
normal dividing yeast cells but fails to 
localize in actin mutants (30). These results 
suggest that the proper distribution of yeast 
calmodulin may require interaction with 
MY02 (30). A putative unconventional 
myosin in Dictyostelium has been shown to 
localize to the contractile vacuole, a site 
where high concentrations of calmodulin 
are found (3 1). Thus, control of the sub- 
cellular localization of calmodulin may be a 
general function of many unconventional 
myosins. 
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Crystal Structure of Neocarzinostatin, an 
Antitumor Protein-Chromophore Complex 

Kyoung-Hee Kim, Byoung-Mog Kwon, Andrew G. Myers,* 
Douglas C. Rees* 

Structures of the protein-chromophore complex and the apoprotein form of neocarzinosta- 
tin were determined at 1.8 angstrom resolution. Neocarzinostatin is composed of a labile 
chromophore with DNA-cleaving activity and a stabilizing protein. The chromophore dis- 
plays marked nonlinearity of the triple bonds and is bound noncovalently in a pocketformed 
by the two protein domains. The chromophore T-face interacts with the phenyl ring edges 
of Phe5* and Phe78. The amino sugar and carbonate groups of the chromophore are 
solvent exposed, whereas the epoxide, acetylene groups, and carbon C-12, the site of 
nucleophilic thiol addition during chromophore activation, are unexposed. The position of 
the amino group of the chromophore carbohydrate relative to C-12 supports the idea that 
the amino group plays a role in thiol activation. 

Neocarzinostatin (NcS) is a natural chro- 
moprotein antibiotic isolated from Strepto- 
myces carzinostaticus and is composed of a 
113-amino acid protein component (apo- 
NCS) and a labile, nonprotein chro- 
mophore component (NCS-chrom) ( I ) .  A 
potent cytotoxic agent, NCS has undergone 
clinical evaluation for antitumor activity 

(2). In the presence of a thiol cofactor, NCS 
induces cleavage of single- and double- 
stranded DNA both in vivo and in vitro. 
The cleavage activity resides exclusively 
within the chromophore component ( I ) ,  
whose structure (3) (Fig. 1) was shown 
previously to include the epoxybicy- 
clol7.3.0ldodecadienedivne structural ele- ' 

ment. ~nv i t ro ,  NCS-chrom undergoes effi- 
Division of Chemistry and Chemical Engineering, Gal- cient thiol addition to form a highly reac- 
iforn~a Institute of Technology, Pasadena, CA 91 125, tive. carbon-centered biradical. which Dro- 
*To whom correspondence should be addressed. vides a potential molecular basis for the 
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