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Nonuniform Probability of Glutamate Release 
at a Hippocampal Synapse 

Christian Rosenmund,* John D. Clements,Wary L. Westbrook$ 
A change in the probability of neurotransmitter release (P,) is an important mechanism 
underlying synaptic plasticity. Although P, is often assumed to be the same for all terminals 
at a single synapse, this assumption is difficult to reconcile with the nonuniform size and 
structure of synaptic terminals in the central nervous system. Release probability was 
measured at excitatory synapses on cultured hippocampal neurons by analysis of the 
progressive block of N-methyl-D-aspartate receptor-mediated synaptic currents by the 
irreversible open channel blocker MK-801. Release probability was nonuniform (range of 
0.09 to 0.54) for terminals arising from a single axon, the majority of which had a low P,. 
However, terminals with high P, are more likely to be affected by the activity-dependent 
modulation that occurs in long-term potentiation. 

T h e  probability of transmitter release (Pr) 
from individual synaptic terminals can be 
estimated from excitatory postsynaptic cur- 
rent (EPSC) amvlitude fluctuations bv the , L 

use df a statistical model of the release 
process (quantal analysis) (1, 2). This ap- 
proach is complicated if P, is not the same 
for all terminals (2). It is difficult to esti- ~, 

mate P, at central synapses because minia- 
ture EPSC amplitudes are close to the 
intrinsic recording noise level and are high- 
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ly variable (2, 3). Furthermore, the assump- 
tions underlying statistical models of trans- 
mitter release may not always be appropri- 
ate at central synapses (2, 4). For instance, 
the standard binomial model assumes that 
P, is uniform at all synaptic terminals. To 
test directly for nonuniform P,, we devel- 
oped an alternative to quantal analysis. 

Whole-cell recordings were made from 
single cultured rat hippocampal neurons 
that formed recurrent (autaptic) synapses 
(5). Recordings of N-methyl-D-aspartate 
(NMDA) receptor-mediated EPSCs were 
made before and during exposure to the 
NMDA open channel blocker, MK-801 (5 
to 20 p,M) (6). Channels were irreversibly 
blocked under our recording conditions (7). 
The MK-801 exposure increased the decay 
rate of the EPSC (Fig. 1, A and B) and, 
with repeated stimuli, progressively reduced 
its amplitude (Fig. 1A). The progressive 

block rate was measured by the fitting of a 
single exponential to the EPSC peak am- 
plitude plotted against stimulation number. 
The rate of progressive block reflects, in 
part, P,. If P, is high then more terminals 
will release transmitter, more postsynaptic 
NMDA channels will open, and the pro- 
gressive block should be more rapid. Con- 
sistent with this hypothesis, the progressive 
block rate was proportional to P, (Fig. 1, C 
and D). Raising the calcium concentration 
increased the EPSC amplitude in the ab- 
sence of MK-801 (Fig. lC) ,  and the pro- 
gressive block rate in MK-801 (5 p,M) 
increased proportionally (Fig. 1 D) (8) .  
Thus, the progressive block rate provides a 
relative measure of Pr. To obtain a quanti- 
tative measure of P,, estimates of the time 
course of glutamate in the synaptic cleft, 
NMDA channel open probability (Po) and 
MK-801 binding rate are also required. All 
these parameters have been measured (6, 
9-1 I) ,  but Po was obtained from outside- 
out patch or whole-cell recordings that 
include extrasynaptic channels (6, 1 1). 
Therefore, we examined the Po of synapti- 
cally activated NMDA channels. 

Channel open probability has been cal- 
culated from the progressive block of 
NMDA currents by MK-801 (1 I) ,  but this 
approach cannot be applied to synaptic 
currents because progressive block is also 
influenced by Pr. However, the faster decay 
rate of NMDA receptor-mediated EPSCs 
in the presence of MK-801 (Fig. IB) can be 
used to estimate Po. This rate can be used 
because the irreversible block of open chan- 
nels early in the synaptic response prevents 
reopenings later in the response and thus 
accelerates the EPSC decay (I I). This ac- 
celeration increases with increasing Po. A 
chemical kinetic model (9) (Fig. 2A inset) 
was used to fit the time course of the 
synaptic current recorded in the absence 
and presence of MK-801 (5 p,M) (Fig. 2A) 
(12). The channel opening rate was the 
only free parameter in the kinetic model 
that affected the change in decay rate pro- 
duced by MK-801, and it had an optimum 
value of 12.4 ? 0.7 s-' (mean + SEM, n = 
1 1). Channel open probability was then 
calculated from the opening and closing 
rates (r, and r,, respectively) with the 
equation Po = rol(ro + r,); Po was 0.053 k 
0.003 (n = 11). The open probability of an 
NMDA channel at the peak of a synaptic 
response (Po*) was also calculated from the 
optimum kinetic model to be 0.041 + 
0.003 (n = 11). This probability is less than 
Po because some desensitization and agonist 
dissociation occur during the rising phase of 
the response. Our estimate of Po* was 
significantly lower than that for channels in 
outside-out patches (Po* = 0.27) (1 1). 
This discrepancy was not due to differences 
in the analysis procedures (13). The lower 
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value of Po* indicates that 60 NMDA 
channels are required at an individual ter- 
minal to produce a miniature EPSC with a 
peak amplitude of 5 pA (14). Control 
experiments suggested that the binding rate 
of MK-801 was accurate and consistently 
reached the synaptic cleft (1 5). In addition, 
MK-801 had no presynaptic effect and act- 
ed on a population of NMDA receptors 
with uniform Po (1 6). 

The estimate of Po can be combined 
with the progressive block rate to estimate 
P, quantitatively. The fraction of channels 
that are irreversibly blocked per stimulus 
determines the progressive block rate. At 
terminals where transmitter is released, the 
fraction of channels that are blocked can be 
estimated from the optimal kinetic model 
parameters (33 t 3% at 5 pM MK-801; n 
= 11) (1 7). Thus, if all terminals released 
transmitter (P, = 1.0), the predicted pro- 
gressive block rate would be 33% per stim- 
ulus. Release probability can be calculated 
as the measured progressive block rate di- 
vided by the predicted progressive block 
rate, on the assumption that P, = 1.0. In 
calcium (2.7 mM) and MK-801 (5 pM), 
the initial progressive block rate was 11.9 t 
0.7% per stimulus (n = 11) and P, = 0.38 
* 0.07. A uniform P, should lead to a 
single exponential progressive block. How- 
ever, the data could not be fitted with a 
single exponential function because the 
sum of squared errors was 11 t 2 (n = 6) 
times greater than for a double exponential 
fit (Fig. 2B). The two time constants were 
5.5 k 0.4 and 40 ? 5 stimuli (n = 6), 
consistent with two synaptic terminal 
types, one with P, = 0.54 -+ 0.05 and the 

other with P, = 0.09 + 0.02. The amplitude 
ratio of the fast to slow exponential compo- 
nents was 1.1 : 5.9 (n = 6), which indicates 
that high P, terminals contributed more to 
synaptic transmission than low P, terminals, 
although the latter were from 0.7 to 6.4 
times more numerous (1 8). The progressive 
block rate remained proportional to EPSC 
amplitude as calcium concentration was var- 
ied (Fig. 1, C and D), suggesting that P, was 
uniformly modulated by calcium and that 
terminals did not simply switch between 
high and low P, states. Although the data 
were well fitted by two exponentials, the 
possibility of a continuous P, distribution is 
not excluded. The finding of nonuniform P, 
is not dependent on the kinetic model of the 
NMDA receptor or the estimate of Po. 
These are only needed for a quantitative 
measurement of P,. 

The nonuniformity of P, raised the pos- 
sibility that its modulation by presynaptic 
receptors might also be nonuniform. We 
tested for nonuniform modulation using 
baclofen, which reduces P, through presyn- 
aptic y-aminobutyric acid (GABA,) recep- 
tors (19). The EPSC amplitude reduction 
produced by baclofen (50 pM) was mea- 
sured before and after a period of stimula- 
tion in the presence of MK-801 (5 pM) 
plus baclofen (50 pM) (Fig. 3). If baclofen 
reduces P, more effectively at some termi- 
nals than at others, then NMDA receptors 
at baclofen-sensitive terminals should be 
partially protected from block during expo- 
sure to MK-801 plus baclofen. Thus, ba- 
clofen would be expected to reduce EPSC 
amplitude more effectively after block in 
MK-801 plus baclofen. Baclofen reduced 

Fig. 1. (A) An NMDA re- A 
ceptor-mediated EPSC 

B - 
was recorded in the 
(thick trace, Con) ab- g, 
sence and (thin traces) 7- 
presence of MK-801 5- 
(5 pM). The first, third, :z 
fifth, seventh, and ninth 
EPSCs after the step 
into MK-801 demon- Con 
strate a progressive 
block of the response. C 
(6) The first and ninth 
MK-801 EPSCs from 
(A) normalized to the 
EPSC in the absence of -p A 2 n ~  D: 3 .- 

, , !. , 

- "" '. 
MK-801; scale as in (A). 100 ms a .  *-\ -.. 
(C) The raising of calci- .*+-q+,*hA 

4 
um concentration in- 
creased the amplitude Stimulus number 140 
of an EPSC. The EPSC 
was recorded in the presence of (top trace) 0.5, (middle trace) 1.0, and (bottom trace) 2.7 mM 
calcium. (D) In the presence of MK-801 (5 pM) the progressive block rate of the EPSC became 
faster as the calcium concentration increased (0.5 mM, lower left trace; 1.0 mM, middle trace; 2.7 
mM, far right trace). Data are from the same EPSC as in (C). For this synapse, the ratio of EPSC 
amplitudes in the absence of MK-801 was 1:6.0:14.2, and the ratio of the progressive block rates 
was 1 :6.3:14.5, respectively. In other neurons, the ratio of the averaged progressive block rates was 
1 :5.6:14.3 (n = 4, 5, and 7 for calcium concentrations of 0.5, 1, and 2.7 mM, respectively). 

EPSC amplitude by 64 ? 8% before block 
and by 84 2 3% after block (n = 7, paired 
t test, P < 0.01) (Fig. 3, A and C), 
consistent with nonuniform modulation. 
The first time constant of progressive block 
in MK-801 plus baclofen was not signifi- 
cantly changed (4.8 t 0.5 stimuli; n = 5) 
(Fig. 3B) relative to that of the control in 
MK-801 alone (5.5 ? 0.4 stimuli; n = 7), 
suggesting that a subpopulation of high-P, 
terminals was insensitive to baclofen. In 
contrast, the first time constant of progres- 
sive block was slowed (13 + 3 stimuli; n = 
5) in low calcium (1.0 mM) (Fig. ID), 
suggesting a uniform reduction of P, at all 
high P, terminals. A fast component of 
progressive block reappeared during contin- 
ued block in MK-801 alone (Fig. 3D), 
consistent with a subpopulation of high P, 
terminals that had been protected during 
the earlier period of MK-801 plus baclofen. 
Thus, baclofen powerfully depressed trans- 

.. 
0 ----...- 

0 40 80 
Stimulus number 

Fig. 2. (A) The NMDA Po was obtained by fitting 
of the EPSC time course with a five-state kinetic 
model. An NMDA receptor-mediated EPSC re- 
corded under (open circles) control conditions 
and (filled circles) in the presence of MK-801 (5 
pM) is shown, together with optimally fitted 
transients from the kinetic model (solid traces). 
The Po for this EPSC was 0.052. The inset 
shows the reaction scheme used to model the 
chemical kinetic properties of the NMDA recep- 
tor and its interactions with glutamate and MK- 
801 : A, molecule of glutamate; R ,  NMDA recep- 
tor; R* ,  open state; R,, desensitized state; and 
R,, irreversibly blocked state. (6) Nonuniform 
P,. An EPSC was recorded in the continuous 
presence of MK-801 (5 pM). Amplitude (filled 
circles) was plotted against stimulus number. 
The time course was well fitted with a double 
exponential function (solid trace). The fast and 
slow components of the exponential fit are 
shown as dashed traces. 
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Fig. 3. (A) An EPSC recorded in A 
the (th~ck trace) absence and 

C 

(thin trace) presence of baclofen 
(50 pM). Baclofen reduced the 
EPSC amplitude by 55%. (B) Pro- 
gressive block by MK-801 (5 pM) 
plus baclofen (50 pM) [same 
EPSC as in (A)]. EPSC ampl~tudes 

-pA-pA 
(open circles) were plotted 
against stimulus number and f ~ t -  D 
ted with a double exponential %400 200 
function (solid trace). (C) After ; 
block by MK-801 plus baclofen, 
exposure again to baclofen (50 $200 100 
pM; thin trace) reduced the EPSC g 
amplitude by 75% (thick trace). 
Data are from the same EPSC as O 0 30 60 0 30 60 
in (A). (D) Continued progressive 

O 
Stimulus number 

block by MK-801 (5 pM) alone. 
EPSC amplitudes (open circles) were fitted with a double exponential function (solid trace). 

mitter release (>84%) at some terminals, 
whereas other terminals were unaffected. 

The nonuniform P, and nonuniform 
modulation observed in our experiments 
have important implications for studies of 
synaptic plasticity. Autaptic synapses are 
not present in the intact hippocampus but 
appear to be functionally indistinguishable 
from svnaDses between cultured neurons , . 
that have served as useful models of central 
excitatory synapses (3, 10, 20). The pro- 
gressive block technique may be complicat- 
ed by the poor diffusion of lipophilic MK- 
801 in hippocampal slices, because MK-80 1 
(80 pM) did not initially reduce the EPSC 
amplitude (21) although this MK-801 con- 
centration should produce a 90% amplitude 
reduction (15). The low P, terminals we 
observed may correspond to the "silent" 
terminals postulated at spinal cord synapses 
(22). However, most studies have either 
not considered nonuniform PI or have as- 
sumed uniform P,  (23). 

The - 10-fold range of PI values from 
the present study is comparable to the 
-10-fold range of pre- and postsynaptic 
membrane specialization areas observed in 
the CAI region of rat hippocampus (24). A 
larger terminal could have more vesicle 

cause low P, terminals are unlikely to be 
active. A selective enhancement of 
postsynaptic responsiveness at high P, ter- 
minals would lead to an increased EPSC 
amplitude coefficient of variation, as ob- 
served after LTP (23, 27). A selective 
enhancement of release from large, high P,  
terminals with large quanta1 amplitudes 
would lead to an increased average minia- 
ture EPSC amplitude (28). 
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Functional Stoichiometry of Shaker Potassium 
Channel Inactivation 

Roderick MacKinnon,* Richard W. Aldrich, Alice W. Lee 
Shaker potassium channels from Drosophila are composed of four identical subunits. 
The contribution of a single subunit to the inactivation gating transition was investigated. 
Channels carrying a specific mutation in a single subunit can be labeled in a hetero- 
geneous population and studied quantitatively with scorpion toxin sensitivity as a se- 
lection tag. Linkage within a single subunit of a mutation that removes the inactivation 
gate to a second mutation that affects scorpion toxin sensitivity demonstrates that only 
a single gate is necessary to produce inactivation. The inactivation rate constant for 
channels with a single gate was one-fourth that of channels with four gates. In contrast, 
the rate of recovery from inactivation was independent of the number of gates. It appears 
that each of the four open inactivation gates in a Shaker potassium channel is inde- 
pendent, but only one of the four gates closes in a mutually exclusive manner. 

I n  the first quantitative theory of Nat and 
K+  channel gating, Hodgkin and Huxley 
postulated that multiple gating particles 
existed and the overall conductivity de- 
pended on the positions of all the particles 
(1). Now, with our growing understanding 
of the proteins that make ion channels, we 
can begin to attach physical meaning to the 
notion of multiple gating particles. We 
asked how inactivation gating in Shaker Kt  
channels de~ends on the movements of 
individual inactivation gates contributed by 
each of the four identical subunits. 

The best understood gating transition is 
N-type inactivation in Shaker Kt  chan- 
nels, the spontaneous closing that occurs 
after voltage-dependent channel opening. 
The NH,-terminus of the Shaker channel 
causes inactivation by forming a cytoplas- 
mic gate, like the "ball and chain" proposed 
by Armstrong and Bezanilla to explain in- 
activation in Naf channels (2-4). The 
Shaker K+ channel consists of four identi- 
cal subunits. It is not known whether the 
channel has four separate inactivation- 
gates, one from each subunit, and if so, 
whether more than one gate is required to 
produce inactivation. Peptides correspond- 
ing to part of the NH,-terminus of a Shaker 
K+ channel can aggregate to form multi- 
mers ( 5 ) ,  raising the possibility that a single 
gate could be formed through the coassem- 
blv of four NH,-termini. 

We studied the number and indepen- 
dence of inactivation gates by exploiting 
the channel's susceptibility to a scorpion 
toxin (6). A mutation of Asp431 to Asn 
(D43 IN) affects toxin sensitivity in a reces- 
sive manner: the mutation must be present 
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in all four subunits to render the channel 
insensitive (7). Thus, if wild-type and 
D431N mutant subunits are coexpressed, 
channels with four mutant subunits can be 
distinguished from channels containing at 
least one wild-type subunit because a single 
wild-type subunit confers toxin sensitivity. 

Scorpion toxin inhibits by binding at 
the extracellular face of the channel. 
whereas the inactivation gate, formed by 
the NH,-terminus. is located on the intra- 
cellular side of the membrane. Toxin sen- 
sitivity and inactivation gating are indepen- 
dent; mutations affecting one property do 
not affect the other. We therefore used the 
recessive nature of the mutation at position 
431 to ask if only a single gate can cause 
inactivation. The approach is illustrated in 
Fig. 1A. The sketch shows the heteromulti- 
meric channels that can result from the 
coexpression of two different subunits. If an 
inactivation gate is present only on the 
toxin-sensitive subunit, then by applying 
toxin to the ~ o ~ u l a t i o n  of channels we can . . 
determine whether a single gate is sufficient 
for inactivation. Channels with at least one 
gate will be blocked because the gate is 
linked to the toxin-sensitive subunit. There- 
fore, if a single gate produces inactivation, 
then all of the toxin-sensitive channels will 
inactivate and the insensitive channels will 
not. In such an experiment, some of the 
channels in the mixed population inactivat- 
ed and some did not (Fig. 1B). When toxin 
was applied, the entire inactivating compo- 
nent was blocked and the sustained compo- 
nent was insensitive (Fig. IC). This out- 
come exactly matches our expectation if a 
single gate causes inactivation. 

If subunits without an intact inactiva- 
tion gate were unable to coassemble with 
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