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Mississippian Fossils from Southern Appalachian chert (Iemison Chert) near the strati- 

Metamorphic Rocks and Their Implications for graphic top of the sequence (6, 7). An 
earlv 20th-centurv reoort of "orobable" 

 ate Paleozoic Tectonic ~volution 

Robert A. Gastaldo,* Gregory M. Guthrie, Mark G. Steltenpohl 
Fossils of Periastron reticulaturn Unger emended. Beck recovered from the Erin Slate of 
the Talladega slate belt of Alabama establish that these rocks have a Mississippian 
(Kinderhookian-Tournaisian) age. The Talladega slate belt, the southwestern extension of 
the western Blue Ridge belt, was interpreted to have been affected by regional dynamo- 
thermal metamorphism and coeval deformation as a result of the Acadian orogeny. This 
fossil find indicates that metamorphism and deformation of the Talladega belt occurred 
after the Early Carboniferous (Alleghanian), requiring a reevaluation of tectonic interpre- 
tations of the southernmost Amalachians. 

, L 

Pennsylvanian plant fossils from the Erin 
Slate (5). which overlies the lemison. has > , ,  

been questioned because of thk inability of 
subsequent investigators to replicate pre- 
vious material. This inconsistency has led 
to the conclusion that these Carboniferous 
fossils are exotic (2). 

In its type area, the Erin Slate is a 
variably deformed black slate that strati- 
graphically overlies the Cheaha Quartzite 
across a gradational contact and underlies 
the Chulafinnee Schist (Fig. 2). The upper 
contact with the Chulafinnee is interoreted 
as a thrust fault (8). The interpretation of 
the Erin-Chulafinnee contact as gradational 

T h e  Talladega 
crystalline thrust 

and conformable; the discovery OYf the fossil 
belt is the westernmost Devonian, coeval with Acadian orogene- Veryhachiurn, a long-ranging (Silurian to 
sheet in the southernmost sis, on the basis of K-Ar whole rock ages Carboniferous) marine acritarch from the 

exposed Appalachians and lies between the on slate and the presence of an Early Erin Slate; and the correlation of the Chu- 
foreland fold-thrust belt to the northwest Devonian megafaunal assemblage from lafinnee with the Jemison Chert (9) have 
and the eastern Blue Ridge to the southeast 
(Fig. I ) .  Southeast-dipping, post-metamor- 
phic fault systems form both upper and Fig. 1. Generalized tec- 
lower boundaries. Low-grade metasedimen- tonic map of the south- 
tary and metavolcanic rocks are interpreted ern Appalachians [mod- 
to range from Late Precambrian to Devo- ifled from (8) and (29)] 

nian in age, on the basis of radiometric 
determinations and lithostratigraphic and 
biostratigraphic correlations with fossilifer- 
ous units in the foreland (1 ) .  Fossiliferous 
units include the Cambrian Jumbo Dolo- 
mite (2) , the Silurian-Early Devonian Lay 
Dam Formation (2), the Early Devonian 
Jemison Chert ( 2 4 ) ,  and the controversial 
Erin Slate that has been argued as either 
Early Devonian (2) or "probably Pennsyl- 
vanian" (5). Metasedimentary rocks in the 
Talladega belt contain no evidence of poly- 
metamorphism (6). The time of dynamother- 
ma1 metamorphism has been interpreted to be 

R A. Gastaldo and M. G. Stetenpoh. Department of 
Geology, Auburn Univers~ty, Auburn, AL 36849-5305. 
G M Guthrle, Geooglcal Survey of Alabama, Tus- 
caloosa, AL 35486-9780. 

*To whom correspondence should be addressed. 

732 SCIENCE . VOL. 262 29 OCTOBER 1993 



led to the hypothesis that the age of the 
Erin is Silurian to Early Devonian (10). 

Within the last 5 years, six well- to 
poorly preserved fossil plant specimens have 
been collected from two localities in the 
Erin Slate (Fig. 3) (1 1). The specimens 
occur in "concretions, usually lens shaped" 
(5), as noted by earlier workers. The fossils 
have various orientations within the phyl- 
lite matrix, are smooth or slightly textured, 
range from nearly circular to fusiform in the 
shape of their transverse section, and rarely 
possess the metamorphic foliation of the 
matrix. Most fossils are carbonaceous; sam- 
ples are overmature (Rock-Eva1 Pyrolysis 
S2 peaks are absent), and organic carbon 
ranges from 1.79 to 2.32% (12). 

Two well-preserved specimens (Fig. 4) 
(13) have been identified as Periastrm retic- 

/:::::J Hilbbee Greenstone 

~hulaflnnee Schlsl 

0 EM slate O- I lull 

n Cheaha QuarWte - 
~anadega group undmerentiated 

Fig. 2. Geologic map of a northwestern part of 
Clay County, Alabama, where the Erin Slate 
outcrops. Numbers indicate depth of cleavage. 
Open triangles, Hollins line fault. Closed trian- 
gles, other faults. 

CollecUons Collections 
61 091.61 291, and 7991 121388 and 61091 

Fig. 3. Locality map with collection sites indi- 
cated where permineralized plant axes of Peri- 
astron have been collected (NE114, NW114, 
sec. 28, T19S, R7E, Clairmont Springs 7.5-min 
quadrangle). Contour measurements are given 
in feet. 

ulaturn Unger emend. Beck (14). Several 
other specimens contain only the more re- 
sistant cortex and are probably of the same 
taxon. The anatomy of Periastrun is unique 
in the paleobotanical record. Plant axes are 
characterized by a more or less median row of 
vascular bundles, variable in number, that 
lie in a plane approximately parallel to the 
transverse axis of elliptical specimens. The 
cortex contains conspicuous aerenchyma 
and longitudinal lacunae (air chambers), 
whereas the outer cortex consists of scleren- 
chymatous tissues in which secretory ducts 
are embedded (1 4). Plant axes are believed 
to represent petioles, although one of the 
specimens (121388.1) appears to be a main 
axis (Fig. 4B) with a divergent lateral petiole 
bearing the characteristic Periastrm anatomy 
(Fig. 4C). 

The biostratigraphic age of Periastrm is 
restricted. It is known from the Lower 
Carboniferous (Tournaisian TN 1-TN2) 
(1 4, 15) Unterculm at Saalfeld, Germany 
(16); the "Lydinnes" Formation (middle to 
upper Tournaisian) of the Montagne Noire, 
France (1 7); and the New Albany Shale 
(Kinderhookian) in Kentucky (1 6). An 
Early Mississippian age is assigned to the 
formation because of the presence of Peri- 
astrm in the Erin Slate. This age is com- 
patible with the microfossil assemblage 

Fig. 4. (A) Transverse section of P. reticulatum 
Unger emend. Beck (specimen 61091.35) in 
which a medial row of four vascular bundles 
can be seen surrounded by aerenchymatous 
tissue and lacunae. (B) Median longitudinal 
section of a main axis of P. reticulatum (speci- 
men 121388.1) in which a lateral axis can be 
seen to depart. Section C-C is illustrated in Fig. 
4C. (C) Incomplete transverse section of the 
lateral axis of specimen 121 388.1 containing 
four medially arranged vascular bundles. Two 
vascular bundles are conspicuous (on the left), 
and two additional vascular bundles occur to 
the right. The vascular bundle row is surround- 
ed by aerenchymatous tissue and lacunae. A 
phyllitic matrix adheres to all axes. All scale 
bars are 10 mm. 

(1 O), as well as the lycopsid cones described 
in the earlv twentieth centurv (5). , . ,  

On the basis of the megafloral assem- 
blage described herein, prograde metamor- 
phism and the attendant ductile deforma- 
tion that affected the Talladega slate belt 
did not occur before the Early Mississippi- 
an. An upper age for this event is found in 
the subsurface to the southwest where the 
Talladega belt is truncated by Late Triassic 
graben-bounding faults (1 8). Although this 
evidence conflicts with previous interpreta- 
tions of metamorphism and tectonism in 
the Talladega belt (I), it is not incompat- 
ible with reported radiometric ages from the 
belt that extend into the Early Mississippi- 
an (7, 19). 

Our fossils ~rovide additional evidence 
to support a more fundamental role than 
was previously thought for the Alleghanian 
orogeny in the western part of the southern 
Appalachians. Recent discoveries of Sil- 
urian to Earlv Carboniferous fossils in the 
western Blue Ridge have been used to 
support the lithostratigraphic correlations 
between the Talladega slate belt and the 
western Blue Ridge belt and indicate that 
metamorphism must be no older than Early 
Carboniferous (20, 2 1 ) . However, the fos- 
sils from the western Blue Ridge are poorly 
preserved and have not been independently 
confirmed. and considerable debate exists 
as to the age range they represent (22). The 
Silurian to Early Carboniferous time frame 
is consistent with the time we propose for 
the Talladega slate belt. Recent 40Ar/39Ar 
dating of amphibolite-facies rocks of the 
central and eastern Piedmont of the south- 
ern Appalachians also indicates that large 
areas previously considered to have been 
affected bv Taconic or Acadian metamor- 
phism and deformation actually cooled be- 
low argon closing temperatures during the 
Carboniferous and Permian (23, 24) and 
may have been metamorphosed then. 

Amphibolite-facies rocks of the south- 
ernmost Piedmont in Alabama and Georgia 
are the most ~roximal surface exDosures to 
the proposed suture with Gondwanan crust 
of the Suwannee terrane (1 8, 25) (Fig. 1). 
Work has shown that these rocks attained 
amphibolite-facies conditions during the 
late Paleozoic (26). These data are consis- 
tent with interpretations of the timing of 
collision between the Suwanee terrane and 
ancestral North America (24). Seismic re- 
flection data indicate a southeast dip for the 
suture in this region (27); therefore, the 
southernmost Alabama and Georgia Pied- 
mont rocks occur in the footwall block to 
the suture. The apparently widespread na- 
ture of the Alleghanian event indicates that 
the Late Paleozoic was a time of major 
tectonometamorphism in the southeastern 
United States resulting from the final as- 
sembly of Pangea (28). 
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Structure at 2.5 A of a Designed Peptide That 
Maintains Solubility of Membrane Proteins 

Christian E. Schafmeister,* Larry J. W. Miercke, Robert M. Stroud 
A 24-amino acid peptide designed to solubilize integral membrane proteins has been 
synthesized. The design was for an amphipathic CY helix with a "flat" hydrophobic surface 
that would interact with atransmembrane protein as adetergent. When mixed with peptide, 
85 percent of bacteriorhodopsin and 60 percent of rhodopsin remained in solution over a 
period of 2 days in their native forms. The crystal structure of peptide alone showed it to 
form an antiparallel four-helix bundle in which monomers interact, flat surface to flat 
surface, as predicted. 

T h e  structures of integral membrane oro- " 
teins are of interest to the'field of structural 
biology, but they have been less than ame- 
nable for determination by x-ray crystallog- 
raohv. Crvstals of at least 20 membrane . z 

proteins have been obtained ( I ) ,  but in only 
a few cases have the crystals been of suitable 
quality to permit the resolution of atomic 
structure (2). With the hypothesis that 
small-molecule detergents, as required to 
solubilize membrane proteins, are in some 
way responsible for the disorder within the 
crystals (3), we attempted to design homo- 
geneous peptides as detergents, "peptiter- 
gents" that would lead to a more homoge- 
neous, well-ordered complex for crystallog- 
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raphy. Peptitergents are amphipathic pep- 
tides designed to sequester the hydrophobic 
membrane-spanning region of membrane 
proteins by packing around the protein in a 
rigid, well-ordered, parallel a-helical ar- 
rangement. The first peptitergent, PD,, was 
designed, synthesized, and crystallized by 
itself and found to form an antioarallel four- 
helix bundle, a structure that is of interest 
from the ooint of view of de novo orotein 
design. It also interacted with the integral 
membrane oroteins bacteriorhodoosin and 
rhodopsin to maintain the majority of pro- 
tein in solution for several days (Fig. 1). In 
contrast, PD, did not maintain PhoE porin 
solubility. 

The peptide was designed as a 24-residue 
amphipathic a helix (Fig. 2) with a hydro- 
phobic surface 30 A in length, long enough 
to traverse the membrane-spanning region 
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