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Neuronal Mechanisms of Object 
Recognition 

Keiji Tanaka 
Recognition of objects from their visual images is a key function of the primate brain. This 
recognition is not a template matching between the input image and stored images like the 
vision in lower animals but is a flexible process in which considerable change in images, 
resulting from different illumination, viewing angle, and articulation of the object, can be 
tolerated. Recent experimental findings about the representation of object images in the 
inferotemporal cortex, a brain structure that is thought to be essential for object vision, are 
summarized and discussed in relation to the computational frames proposed for object 
recognition. 

Almost 30 visual areas have been identi- 
fied in the cerebral cortex of the macaque 
monkey, and many of them can be orga- 
nized into two anatomical pathways: the 
ventral pathway directed toward the infero- 
temporal cortex (IT) and the dorsal path- 
way directed toward the inferior parietal 
lobule. The two ~athwavs are also function- 
ally distinguishing: The ventral pathway is 
thought to be responsible for object vision, 
and the dorsal pathway for space vision or 
visuomotor control (1 ) . The ventral path- 
way runs from cortical area V1 to V2, 
thereafter to V4, and finally to the IT. This 
pathway is thought to be essential for object 
vision because monkeys that have had their 
IT bilaterallv ablated show severe and se- 
lective deficis in learning tasks that require 
the visual recognition of objects (2). The 
IT is further divided into the posterior IT, 
or TEO. and the anterior IT. or TE. The 
projection from V4 that terminates in TEO 
is more dense than that to TE, and TEO 
projects to the most posterior-anterior ex- 
tent of TE. The IT projects to various 
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structures outside the visual cortex, includ- 
ing the perirhinal cortex (areas 35 and 36), 
the prefrontal cortex, the amygdala, and 
the striatum of the basal ganglia. The pro- 
jections to these targets are more numerous 
from TE, especially the anterior part of TE, 
than from the areas at earlier stages. There- 
fore, there is a sequential cortical pathway 
from V1 to TE, and outputs from the 
pathway originate mainly in TE. 

Columnar Organization in TE 

An obstacle in the study of neuronal mech- 
anisms of object vision has made the deter- 
mination of the stimulus selectivity of indi- 
vidual cells difficult: There is a great variety 
of object features in the natural world, and 
if perception is based on a calculation that 
is nonlinear (which is very plausible), the 
variety cannot be represented by an arbi- 
trary set of "basic" features. We developed a 
systematic reduction method in which the 
study of selectivity was started with many 
natural objects, and the complexity of the 
effective stimuli was reduced to determine 
the features critical for activation of indi- 
vidual cells (3, 4). Some previous studies 
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used a similar method (5 ) .  The procedure 
involves two steps: First, we presented 
many three-dimensional animal and plant 
revresentations to find the effective stimuli: 
second, we simplified the images of the 
effective stimuli by sequentially removing a 
part of the features contained in the image 
to determine the necessary and sufficient 
characteristics for the maximal activation 
of the cell. The latter step was first per- 
formed with paper cutouts (3). but a com- 
puter system has now been developed (4). 
Images of the effective objects are taken 
with a video camera and then simplified, 
and pictures are drawn to simulate a part of 
the features contained in the image. Figure 
1 exemplifies the process for a cell for which 
the effective stimulus was reduced from a 
dorsal view of the head of an imitation tiger 
to a combination of a vair of black rectan- 
gles and a white square. 

Using this procedure, we found that most 
cells in TE required moderately complex 
features for their activation (Fig. 2) (3). The 
critical features were more complex than 

Fig. 1. An example of the procedure to deter- 
mine the critical feature for activation of single 
cells: the gradual reduction of the complexity of 
the image of effective object stimuli. The sub- 
stitution of intermediate features for the image 
of a tiger head, down to a combination of a 
white square with a pair of black rectangles, did 
not reduce the magnitude of the response. 
Further decomposition eliminated the re- 
sponse. 

orientation, size, color, and simple texture, 
which are known to be extracted and repre- 
sented by cells in V 1. Some of the features 
were shapes that were moderately complex, 
whereas others were combinations of such 
shaves with color or texture. The individual 
critical features were not complex enough to 
specify a particular object seen in nature 
through activation of a single cell. Activa- 
tion of a few to several tens of cells with 
different critical features seems necessary to 
specify a particular natural object. 

Bv recording from more than two cells 
L, 

simultaneously with a single electrode, we 
found that cells located at nearbv wositions , . 
in the cortex have a similar stimulus selec- 
tivity (4). The critical feature of oneisolat- 
ed cell was determined by the procedure 
described above, and responses of another 
isolated cell, or nonisolated multiunits, 
were simultaneously recorded. In most cas- 
es, the second cell responded to the optimal 
and suboptimal stimuli of the first cell. The 
selectivity of the two cells varied slightly, 
however, in that the maximal response was 
evoked by slightly different stimuli or the 
mode of the decrease in response was dif- 
ferent when the stimulus was changed from 
the ovtimal stimulus. 

We then made vertical and oblique pen- 
etrations through TE (4) .  The critical fea- 
ture of a cell located at the middle of the 
penetration was first determined. A set of 
stimuli, including the optimal, suboptimal, 
and ineffective stimuli for the first tested 
cell. was made and then used to test the 
responsiveness of other cells recorded at 
different positions along the same penetra- 
tion. Cells that responded to related stimuli 
in the stimulus set, that is, stimuli that were 
identical or similar to the optimal stimulus 

Fig. 2. Twelve examples of the critical features 
for the activation of single cells in area TE. 

for the first cell. covered most areas of the 
vertical penetrations, but were limited to a 
span of several hundred micrometers in the 
oblique penetrations (average, 400 pm). 

The TE region is thus composed of 
columnar modules, like those in V1, in 
which cells with overlapping but slightly 
different selectivity cluster together (Fig. 
3). The width of a columnar module across 
the cortical surface may be slightly greater 
than 400 pm; the span of a column along 
an oblique penetration should be smaller 
than the real size of the column if the 
penetration crosses its periphery. The num- 
ber of modules. which was estimated bv a 
division of the whole surface area of TE iAto 
500 pm by 500 pm squares, is 1300. This 
columnar organization may be crucial to the 
representation of object images in TE. 

Functions of the TE Columns 

The columnar organization suggests that an 
object feature is not represented by the 
activity of a single cell but by the activity of 
many cells within a single columnar mod- 
ule. Representation by multiple cells in a 
columnar module in which the selectivity 
varies from cell to cell and effective stimuli 
largely overlap can satisfy two apparently 
conflicting requirements in visual recogni- 
tion: robustness to subtle changes in input 
images and precision of representation. 
Whereas the image of an object projected 
to the retina changes in response to varia- 
tions in illumination, viewing angle, and 
articulation of the object, the global orga- 
nization of outputs from TE changes little. 
The clustering of cells with overlapping and 
slightly different selectivity works as a buffer 
to absorb the changes. General advantages 
of the distributed representation have been 
extensively discussed elsewhere (6). 

The representation by multiple cells 
with overlapping selectivity can be more 
precise than a mere summation of represen- 
tation by individual cells. A similar argu- 
ment has been made for hyperacuity (7). 
The position of the receptive fields changes 
gradually in the retina with a large overlap 

Fig. 3. Schematic diagram of the columnar 
organization in TE. Cells with similar but slightly 
different selectivity cluster in elongated vertical 
columns, perpendicular to the cortical surface. 
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among nearby cells. With the use of the 
difference between the activity of nearby 
cells, an acuity much smaller than the size 
of the receptive fields is produced. A mech- 
anism similar to that in retinal space may 
work in feature space with largely overlap- 
ping and gradually changing selectivity, as 
suggested by Edelman (8). A subtle change 
in a particular feature, which does not 
markedly change the activity of individual 
cells. can be coded bv the differences in the 
activity of cells with overlapping and slight- 
ly different selectivity. 

The variety of selectivity within single 
columns may have more functional mean- 
ings. In the vertical penetrations made in 
TE, the selectivity of cells at distant loca- 
tions tended to differ more than those of 
cells at closer distances (4). This, however, 
does not mean that the selectivity changed 
depending on the layer in which the cell 
was located. The ~enetrations could not be 
exactly aligned with the columns, and the 
distance between two cells projected to the 
cortical surface tended to be larger as the 
distance along the penetration became larg- 
er. Therefore. it is ~ossible that the selec- 
tivity of cells gradually changes along the 
axis uarallel to the cortical surface within 
single columns. This means that a variety of 
object features are systematically represent- 
ed along the cortical surface in a continuous 
manner, which is similar to the continuous 
representation of orientation within the 
hypercolumns of Vl.  The width of the 
columnar modules in TE is closer to the 
width of the hypercolumns than that of 
individual orientation columns of V1. 

The stimulus selectivity of cells does not 
change gradually from column to column in 
TE; rather, there is an apparent discontinu- 
itv at the border. This discontinuitv mav 
seem inconsistent with the hypothesized 
principle of continuous representation of 
object features; however, the discontinuity 
is inevitable in the representation of inte- 
grated features. The object features of mod- 
erate complexity compose a feature space of 
extremely high dimensions, and a space of 
high dimensions cannot be mapped on a 
two-dimensional (2D) surface without ex- 
tensive discontinuities (9). 

Thus, the columnar organization of TE 
may provide an overlapping, and possibly 
continuous, representation of object fea- 
tures, upon which various kinds of calcula- 
tions, such as that of similarity between 
images of different objects (8) and transfer 
of the image of the same objects for 3D 
rotations (1 0) , are performed. 

Binding Activity in Distant Columns 

Because object features to which individual 
TE cells responded were only moderately 
complex and cells within a single column 

responded to similar features, the calcula- 
tion performed within a column can pro- 
vide only information on partial (but not 
necessarily local) features of object images. 
To represent the whole image of an object, 
calculation in several or several tens of 
different columns must be combined. This 
evokes the problem of "binding," that is, 
how to discriminate different sets of activity 
when there are more than two objects in 
the nearby retinal positions. The receptive 
fields of TE cells are too large to discrimi- 
nate different objects according to their 
retinal positions. 

One ~ossible mechanism to solve the 
problem is the synchronization of firings 
(I I). If firing of cells that originates in the 
image of the same object is synchronized 
and firing that originates in different objects 
is asynchronous, the different sets of firings 
can be discriminated. Firing synchronized 
with oscillations has been found between 
cells in the cat visual cortex, and some 
context dependency of the synchronization 
has also been reported (12). Although os- 
cillating firing has not been found in TE 
(1 3), nonperiodic synchronization may be 
present. 

Another possible mechanism of bind- 
ing in TE is selection by attention (14). 
We can pay attention to only one ob- 
ject at a time. If the representation of 
features of an attended obiect is enhanced 
and that of other objects is suppressed, the 
binding problem disappears. This mecha- 
nism is likely because strong effects of 
attention have been found on responses of 
TE cells (1 5). 

lnvariance to Viewing Angle 

Marr (1 6) claimed that an object image in 
viewer-centered coordinates should be 
transformed into an obiect-centered reme- 
sentation so that the matching of the inp& 
can be done with only a single stored 
representation of the object. He thought it 
impossible to store all different 2D views of 
objects in the brain. However, there have 
been no signs of object-centered represen- 
tation in TE or earlier stages in the afferent 
pathway of TE. Responses of cells were 
almost always selective for the orientation 
of stimuli. 

Accumulating psychophysical evidence 
suggests that the internal representation of 
obiects is not obiect-centered in human 
visual perception (1 7), and computational 
analyses have shown that not necessarily all 
the 2D views have to be stored in the brain. 
A linear superposition of several 2D views or 
an interpolation and extrapolation of these 
views with generalized radial basis functions 
(1 0) can construct anv 2D view of an obiect. . , 

In the original exblanation of the [heo- 
retical analyses, the superposition and the 

interpolation and extrapolation were per- 
formed on the whole images of objects. The 
operations can also be performed with partial 
features like those represented in TE if there 
is a separate mechanism to bind the partial 
features. The interaction between cells with 
overlapping but slightly different selectivity 
in columns of TE can subserve the opera- 
tions. This possible relation between the 
recognition of 3D objects and the columnar 
organization in TE can be systematically 
studied with use of the preserved plasticity of 
TE in adult monkeys (see below). 

Imagery of Objects 

Discharges of IT cells not only reflect the 
processing of input images but participate in 
the internal representation of the images of 
objects. Fuster and Jervey (18) recorded 
from TE cells of alert. conscious monkevs 
performing a kind of delayed matching-to- 
sample task. The task was composed of 
three phases: presentation of a sample stim- 
ulus, delay period with no stimuli, and 
presentation of a set of stimuli for match- 
ing, which included the sample. The mon- 
key had to retain information on the 
sample stimulus during the delay period. 
Some TE cells maintained discharees dur- " 
ing the delay period, the strength of which 
depended on the sample stimulus. Color 
stimuli were used by Fuster and Jervey, but 
the finding has been generalized to shape 
stimuli (1 9). These selective, maintained 
discharges may constitute the working 
memory of the sample stimulus. Another 
candidate for working memory in TE, 
modulation of responses to stimulus pre- 
sentation, has been found (20). 

Discharges of IT cells may also partici- 
pate in the representation of imagery. 
Sakai and Miyashita (2 1) trained monkeys 
to remember associations of 12 pairs of 
different patterns. The task was basically 
the same as the delayed matching-to-sam- 
ple. In response to a given sample stimu- 
lus, the monkey had to select its pair in 
the match presentation. Some TE cells 
selectivelv resuonded to one or a few 
particular patterns when the patterns were 
presented as sample stimuli. When pattern 
pairs were presented as the sample, they 
did not fire upon the sample presentation, 
whereas their discharge rate gradually in- 
creased during the delay period toward the 
match presentation. These discharges may 
constitute the monkey's expectation of the 
stimulus optimal for the cell and represen- 
tation of imagery. 

Formation of the Selectivity 

The selective responses to complex fea- 
tures, which were first bound in TE cells, 
have been traced to earlier stages in the 
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afferent pathway to TE. We found that 
cells requiring such complex features for 
the maximal activation are already present 
in  TEO and V4 (22). Gallant and co- 
workers (23) also found that there are cells 
that respond preferentially to concentric 
or hyperbolic stripes rather than to 
straight stripes. The  optimal features i n  
these areas include concentric stripes but 
are much more divergent. Unlike in  TE, 
however, many of the cells in  TEO and V4 
show moderate responses to some primary 
features i n  addition to the maximum re- 
sponse to the complex critical feature, and 
cells with various levels of selectivity in- 
termingle in  single vertical penetrations 
made in these areas. We take this mixture 
of various cells as evidence that selectivity 
is constructed through local networks i n  
these regions. Thus, we propose that the 
selectivity to features of medium complex- 
ity is mainly constructed i n  local networks 
in  TEO and V4. 

The anatomical organization of the for- 
ward projection from TEO to TE is consis- 
tent with the above idea. A single site in  
TEO projects to only three to five focal 
regions in  TE, each of which had a size 
roughly corresponding to the physiological- 
ly defined columns (24). If outputs from 
TEO carry information on  primary features, 
outputs from a single site should project to 
more distributed regions in  TE because the 
information is universal. 

There are two things first achieved in 
TE: columnar organization, namely, the 
arrangement of cells with overlapping and 
slightly different selectivity i n  local re- 
gions, and invariance of responses for the 
stimulus position. The  receptive fields of 
cells i n  T E  are large, including the fovea 
(3, 5), and the selectivity of responses is 
essentially constant throughout the large 
receptive fields (25). The  receptive fields 
of the cells i n  TEO and V4 are still much 
smaller than those of cells in  T E  and are 
retinotopically organized (26, 27). This 
means that there are two steps in  the 
formation of cells that respond to integrat- 
ed features with invariance to changes in  
stimulus position. First, the selectivity is 
constructed for stimuli at a particular ret- 
inal position in  TEO and V4, and then the 
invariance is achieved in TE as inputs are 
obtained of the same selectivity but with 
the receptive fields at different retinal 
positions. The  selection of appropriate 
inputs can be achieved through a simple 
self-organizing mechanism, as was pro- 
posed by Foldihk (28) for formation of 
complex cells in  V1. That  is, a Hebbian 
rule generalized over time for the coinci- 
dence of pre- and postsynaptic activity 
automatically gathers inputs representing 
the same features at  different retinal posi- 

tions as the object changes the position. 
A problem in this two-step structure is 

that individual cells or columns i n  TE 
each require a set of input cells with 
receptive fields distributed over the large 
receptive fields of the TE cells. Because 
the central visual field is overrepresented 
in TEO (26), cells in  the peripheral TEO 
may not be sufficient in  number to extract 
the great number of integrated features. I 
suggest that the inputs from the peripheral 
TEO convey information on  primitive fea- 
tures and the selectivity in  the periphery is 
constructed at  synapses of TE cells. The  
selectivity can be generalized in TE cells 
from the central to the peripheral visual 
field through the generalized Hebbian 
rule. The  selective inputs from the central 
TEO are used as seeds. 

The  selectivity to complex critical fea- 
tures and the columnar organization in TE 
are not determined by genes or early de- 
velopment in  infancy but are subject to 
changes according to changes in  the visual 
environment in  the adult. We trained an 
adult monkey to discriminate 28 moder- 
ately complex shapes (29). The  training 
was basically the delayed matching-to- 
sample and the presentation for matching 
was composed of five stimuli. After a year 
of training, recordings from TE were per- 
formed in an anesthetized condition. We 
determined for individual cells the best 
stimulus from the set of animal and ~ l a n t  
models that we had previously prepared to 
investigate the critical features i n  naive 
monkeys and compared the response to 
the best obiect stimulus with resDonses of 
the same cell to the shape stimuli used in 
the training. In  T E  of the trained monkev. - , , 
39% of cells gave a maximum response to 
some of the stimuli used in the training. 
Conversely, 9% of TE cells i n  untrained 
animals responded maximally to these 
stimuli. These results indicate that the 
number of cells that respond to training 
stimuli increased as a result of the l-year- 
long discrimination training. The  spatial 
structure of the converted cells. as well as 
whether or not similar changes happened 
in TEO and V4, is yet to be studied. 
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