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Structure-Function Analysis of the Ion Channel 
Selectivity Filter in Human Annexin V 

Robert Berendes, Dieter Voges, Pascal Demange, 
Robert Huber,* Alexander Burger 

Electrophysiology and structural studies were performed on an annexin V variant con- 
taining a mutation of glutamic acid-95 to serine in the center of the pore region. The 
mutation resulted in a lower single channel conductance for calcium and a strongly 
increased conductance for sodium and potassium, indicating that glutamic acid-95 is a 
crucial constituent of the ion selectivityfilter. There were only minor differences in the crystal 
structures of mutant and wild-type annexin V around the mutation site; however, the mutant 
showed structural differences elsewhere, including the presence of a calcium binding site 
in domain Ill unrelated to the mutation. Analysis of the membrane-bound form of annexin 
V by electron microscopy revealed no differences between the wild type and mutant. 

Annexin v belongs to a family of calcium- 
and phospholipid-binding proteins ( I )  and 
forms voltage-dependent calcium channels 
in planar lipid bilayers (2). Our analysis of 
human annexin V by x-ray crystallography 
(3) revealed a hydrophilic pore in the cen- 
ter of the ~ ro te in  that is filled with a chain 
of water molecules and that we tentatively 
identified as the ion-conduction pathway 
(3). We introduced a Glu+Ser mutation at 
amino acid 95, which is located within the 
pore, and have analyzed the mutant protein 
for both functional (ion selectivity) and 
structural changes. u 

We prepared phospholipid bilayers from 
liposomes (4) in the inside-out configura- 
tion of the patch-clamp technique (5). 
Annexin V was added to the bath solution 
and bound to the bilayers at the tip of the 
patch pipette. We recorded single channel 
currents through wild-type annexin V and 
the G l ~ + S e r ~ ~  mutant channels at differ- 
ent pipette potentials with Ca2+ in the 
pipette and Na+ in the bath solution (Fig. 
1. A and B) . Although the mutation caused " 

only a slight decrease in Ca2+ currents 
through the protein, the Nat currents were 
strongly increased. In addition, the voltage 
dependence of the gating kinetics differed 
for the two channels (6). 

We next quantified the single channel 
conductances and the ion selectivity. For 

Mar-Planck-lnstitut fur Biochemie 82152 Martinsried, 
Germany. 

*To whom corres~ondence should be addressed. 

the wild-type and G l ~ + S e r ~ ~  annexins, 
respectively, the Ca2+ conductances were 
29.5 + 1.6 pS and 22.0 + 2.2 pS, the Nat 
conductances were 24.7 -+ 1.2 pS and 
132.5 f 4.5 pS, and the reversal potentials 
were -21.0 + 1.8 mV,and +5.9 -t 1.0 mV 
(Fig. 1C) . The calculated permeability ra- 
tio (P,,/P,,) was 3.75 for the wild-type 
annexin and 0.71 for the mutant, indicat- 
ing that the mutant channel had lost selec- 
tivity for Ca2+ versus Na+ ions. Similar 
changes were observed for Kt: For the 
wild-type and the G l ~ + S e r ~ ~  annexins, the 
K+ conductances increased from 21.2 2 
1.9 pS to 96 -t 12 pS and the reversal 
potential shifted from - 23.2 -t 1.9 mV to 
+2.1 mV. 

Comparison of the crystal structures of 
wild-type annexin (3) and the G l ~ + S e r ~ ~  
mutant (7) revealed only small differences 
around the mutated residue (Fig. 2A). In the 
wild-type molecule, Glu95 was hydrogen- 
bonded across the pore to Arg271 and His267 
(3) located in module 1 (consisting of do- 
mains I and IV) , interactions that are absent 
in the G l ~ + S e r ~ ~  mutant. In contrast, the 
mutated residue Ser95 interacted only with 
Tyr9' in module 2 (consisting of domains I1 
and 111). That limitation may diminish the 
steric hindrance for an ion passing through 
the pore. Both residues are involved in 
hydrogen bonds to water molecules. 

When the Na-Ca gradient in the single 
channel measurements was reversed, the 
inward rectification af the ion currents (Fig. 
1C) changed to an outward rectification of 
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similar size (6). This behavior would be 
predicted from the position of the mutated 
G l ~ + S e r ~ ~  residue in the center of the ion 
pathway through the annexin V pore. Al- 
though Glu95 is surrounded by amino acid 
side chains (Fig. 2, B and C) providing 

+no mv- 0 

7 0 

+60 mv--- % 

-- ~ v - - S ~ ! J - ~ ! L ~ ~  I IT 
a 

- - -  - 0 

potential CaZ+ ligands, a high-affinity CaZ+ 
binding site within the pore is not obvious 
in the crystal structure. Nevertheless, a 
low-affinity CaZ+ binding site might be 
formed with Glu95 as the main ligand. 

Important structural differences in the 

Fig. 1. Single channel current recordings of (A) 
wild-type annexin V and (8) the Glu+Serg5 
mutant incorporated into acidic phospholipid 
bilayers at different pipette potentials ( V , .  (C) 
The current-voltage relationships for the wild- 
type annexin V (open circles) and the 
Glu+SerQ5 mutant (filled squares) resulting 
from these current recordings. The continuous 
lines represent nonlinear least-squares fits. 

G l ~ + S e r ~ ~  mutant were the smaller angle 
between the two modules and, surprisingly, 
a Ca2+ binding site in domain I11 (Fig. 2A) 
that had not been observed in wild-type 
annexin V (8). The intermodule angle was 
found to vary in three different wild-type 
structures (3, 9) and therefore is probably 
determined by crystal packing. A direct 
influence of the mutation on the CaZ+ 
binding site could be ruled out because 
another mutant ( G l ~ + G l n ~ ~ )  crystallized 
in both space groups, the wild-type R3 form 
and the G l ~ + S e r ~ ~  R3 form (10). The 
G l ~ + G l n ~ ~  mutant had the CaZ+ binding 
site only in the latter. 

The CaZ+ binding site in domain I11 was 
not identical to the CaZ+ binding sites 
identified in domains I, 11, and IV. How- 
ever, the metal was similarly coordinated in 
a distorted pentagonal bipyramid with an 
average Ca2+-to-oxygen distance of 2.37 
A, and the Ca2+ had a low B factor (13.2 
AZ). The Ca2+ binding site was formed in 
part by two carbonyl oxygens from LyslS6 
and Gly188 located in a loop with an ex- 
posed Trp at position 187. The Trpla7 is 
stabilized in this location by van der Waals 
interactions with residues of a symmetry- 
related molecule and by a hydrogen bond 
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with a water molecule. The rest of the Ca2+ 
binding site is formed by the carboxylate 
group of the conserved G ~ u ~ ~ ' ,  the carbonyl 
oxygen of GlylE3, a water molecule, and a 
sulfate molecule. In wild-type annexin, the 
TrplB7 loop is not exposed but completely 
buried inside domain 111. Another segment 
of the protein, including the Ca2+ ligand 
G1ut2', which lies near the module inter- 
face in the wild-type form, was also rear- 
ranged in the G l ~ + S e r ~ ~  mutant (Fig. 
2A). In the presence of calcium, the ex- 
posed TrplE7 in the mutant may penetrate 
the interface region of the membrane area 
adjacent to the protein. This hypothesis is 
supported by the different fluorescence 
properties of TrplE7 in the free and mem- 
brane-bound fonns of annexin V (1 I). The 
other Ca2+ binding sites identified in the 
wild-type molecule were incompletely oc- 
cupied in the mutant crystal form. 

The conformation of the  TI^"^ loop 
appears to be dependent on the crystal 
packing; this observation suggests that 
there is an energetically delicate balance of 
conformations whose equilibrium is shifted 
by calcium. The expulsion of Trpla7 and its 
possible penetration of the phospholipid 
bilayer might occur simultaneously with the 
electroporation phenomenon probably re- 
sulting from the strong electrostatic gradi- 
ent on the membrane-bound surface of 
annexin V (12), thereby inducing ion 
channel formation. All synergistic action of 
these two mechanisms is consistent with 

the proposal that the phospholipid bilayer 
becomes ion-permeable after the binding of 
annexin V without a membrane penetra- 
tion of the comvlete molecule. 

Several chaniel-forming proteins under- 
go structural changes when they bind to 
membranes (13). To investigate the effect 
of membranes on annexin structure, we 
prepared two-dimensional crystals of the 
wild-type protein and the G l ~ + S e r ~ ~  mu- 
tant on acidic phospholipid monolayers and 
determined their structures in projection by 
electron microscopy and image processing 
(14) (Fig. 3, A and B). There were no 
substantial differences in structure between 
the mutant and wild-type annexins, and 
the shape of the membrane-bound form was 
similar to that determined by x-ray crystal- 
lography (Fig. 3C). 

The selectivitv for Ca2+ versus mono- 
valent cations in mutants of the sodium and 
calcium channels from brain and of the 
acetylcholine receptor was found to de- 
crease proportionally as the number of pos- 
itive charges within the putative pore-form- 
ing regions was increased (15). The Ca2+ 
permeability and the selectivity of gluta- 
mate receptors are predominantly con- 
trolled by RNA editing, in which the per- 
meability coefficient PdivalenJPdenL is 
larger when a Gln rather than an Arg 
occupies the so-called "GldArg site" (1 6) .  
Inspection of the amino acid sequence of 
annexin VII (3), which has a different ion 
selectivity than annexin V (1 7), reveals 

dWcll#ed mn&h V trimer. A trirner fm 
~stnrctureoftheR3form 

of the 
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that one of the differences in the pore 
region between the two proteins is the 
exchange of a Ser residue for the G ~ u ~ ~ .  Our 
structure-function analysis leads to the con- 
clusion that amino acid G1u9' is an impor- 
tant constituent of the ion pathway and the 
selectivity filter of annexin V by virtue of its 
size, charge, and interactions with adjacent 
amino acid side chains. 
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Characterization of a Presynaptic 
Glutamate Receptor 

Tania Smirnova, Jacques Stinnakre, Jacques Mallet* 
Glutamate receptors mediate excitatory neurotransmission in the brain and are important 
in the formation of memory and in some neurodegenerative disorders. A complementary 
DNA clone that encoded a33-kilodalton protein (GR33) was obtained by screening a library 
with an antibody generated against glutamate binding proteins. The sequence of GR33 is 
identical to that of the recently reported presynaptic protein syntaxin. When GR33 was 
expressed in Xenopus oocytes, it formed glutamate-activated ion channels that are phar- 
macologically similar to those of N-methyl-D-aspartate receptors but with different elec- 
trophysiological properties. Mutation of the leucine 278 residue in the single putative 
transmembrane segment of GR33 affects the properties of the channel. Thus, in vivo GR33 
may be a presynaptic glutamate receptor. 

T h e  family of glutamate-gated ion channels 
includes receptors activated by N-methyl-D- 
aspartate (NMDA) , kainic acid, and a-ami- 
no-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid (AMPA) (1). The NMDA receptors 
have been shown to participate in  neuronal 
plasticity (I) ,  long-term potentiation (Z), 
and excitotoxicity (3) as well as in  degen- 
erative disorders (4). A large body of evi- 
dence indicates that these glutamate recep- 
tors are localized postsynaptically. Howev- 
er, recent findings demonstrate that regula- 
tion of glutamate release from presynaptic 
membrane involves one or more presynap- 
tic glutamate autoreceptors (5, 6).  Here, 
we describe the cloning and functional 
characterization of a new glutamate recep- 
tor, which is located presynaptically. 

A 1.7-kb fragment of complementary 
DNA (cDNA), GR33, was obtained from a 
rat striatal cDNA library with the use of a 
cDNA clone of 480 base pairs (bp) isolated 
by immunoscreening of a human cortex 
library with an antibody generated against 
glutamate binding proteins (7). The amino 
acid sequence of GR33, which consists of 
288 residues, was deduced from the longest 
open reading frame. A search of the Gen- 
Bank database revealed that the sequence of 
the GR33 protein is identical to that of the 
presynaptic protein syntaxin (p35B) (8) and 
is similar to a protein of unknown function 
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called HPC-1 (9). Syntaxin has been sug- 
gested to dock synaptic vesicles near calcium 
channels at presynaptic active zones (8). A t  
its COOH-terminus, this protein has a sin- 
gle hydrophobic region that may be a trans- 
membrane segment (TM) . 

W e  tested whether GR33 could function 
as a glutamate receptor by injecting GR33 
complementary RNA (cRNA) into Xeno- 
pus oocytes (10). The GR33 protein formed 
glutamate-activated channels with a phar- 
macological profile characteristic of NMDA 
receptors in several ways (Fig. 1). (i) Ap- 
plication of 100 p M  glutamate or 200 pM 
NMDA evoked inward currents at negative 
potentials (Fig. 1, A and B) (n = 32). The 
effective dose for half-maximal response 
(ED50) for NMDA 'was 10 p M  (Fig. ID) ,  
which is similar to data obtained in oocytes 
injected with either rat brain polyadenyl- 
ated (1 1) or synthetic NMDA receptor 
subunit (NMDAR1) mRNAs (12). (ii) 
Omission of glycine from the medium sig- 
nificantly reduced the response to gluta- 
mate and to NMDA (Fig. 1, A and B) . (iii) 
NMDA-evoked currents were reduced to 
40% in the presence of the competitive 
NMDA receptor antagonist ~-2-amino-7-  
phosphonoheptanoic acid (10 pM AP7) (n 
= 5) (Fig. IB), and the responses to gluta- 
mate (100 pM) and to NMDA (200 pM) 
were completely blocked when the concen- 
tration of AP7 was increased to 100 plvt 
(Fig. 1, A and B) (n = 6). Interestingly, in  
contrast to the "classic" NMDA receptor, 
another competitive antagonist, D-2-ami- 
no-4-phosphopentanoic acid (AP5; 100 
pM) ,  reduced NMDA (200 pM) currents 
only 40% (n = 2); .however, AP5 com- 
pletely blocked responses to glutamate (100 
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