Expression of Two T Cell Receptor α Chains: Dual Receptor T Cells

Elisabetta Padovan, Giulia Casorati, Paolo Dellabona, Stefan Meyer, Manfred Brockhaus, Antonio Lanzavecchia*

Although many T cells carry two in-frame V_α rearrangements, the products of both V_α rearrangements have never been shown simultaneously on the surface of normal cells. With the use of monoclonal antibodies to V_α2, V_α12, and V_α24, up to one-third of mature T cells expressed two V_α chains as part of two functional and independent T cell receptors (TCRs). Thus, the "one cell, one receptor" rule does not apply to a large subset of $\alpha\beta$ T cells. Cells that belong to this dual TCR subset may be specific for a broader range of antigens than cells with a single receptor, which may be important for autoimmunity and alloreactivity.

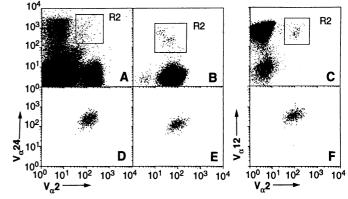
According to Burnet's clonal selection theory, each lymphocyte should bear a single receptor or at least a limited number of receptors (1). Experimental observations up to now indicate that most T and B lymphocytes carry a single receptor type; this has been referred to as the "one cell, one receptor" rule. In thymocytes developing along the $\alpha\beta$ lineage, the presence of a productively rearranged V_{β} chain prevents further β rearrangements (2). This is not the case for the TCR α locus, where both alleles rearrange simultaneously and rearrangements continue until a surface TCR $\alpha\beta$ heterodimeric molecule is expressed that can be positively selected by thymic major histocompatibility complex (MHC) molecules (3). Thus, approximately one-third of mature $\alpha\beta$ T cells carry two productive α rearrangements and, as a consequence, have the potential to express two messages and two proteins (4–7). However, when mouse T cell clones that carry two in-frame V_{α} rearrangements were analyzed by immunoprecipitation and two-dimensional gel electrophoresis, only one α chain was found on the cell surface of each of the three clones analyzed (4, 5). These results suggested that the "one cell, one receptor" rule might still be valid because of preferential expression (8) or preferential pairing of one of the two α chains with the β chain (9).

Using three mouse monoclonal antibodies that recognize $V_{\alpha}2$, $V_{\alpha}12$, or $V_{\alpha}24$, we examined surface expression of TCR α . Peripheral blood mononuclear cells (PBMCs) from normal donors were stained with a combination of two antibodies to V_{α} to detect T cells that expressed the two corre-

E. Padovan, S. Meyer, A. Lanzavecchia, Basel Institute for Immunology, Grenzacherstrasse 487, CH-4005 Basel, Switzerland.

G. Casorati and P. Dellabona, DIBIT H. S. Raffaele, Via Olgettina 60, I-20132 Milano, Italy.

M. Brockhaus, Pharma Research New Technologies, F. Hoffmann–La Roche, CH-4002 Basel, Switzerland.


*To whom correspondence should be addressed.

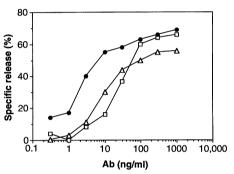
sponding V_{α} chains (10). Cells stained by two antibodies to V_{α} were detected at a low frequency (10⁻³ to 10⁻⁴) (Fig. 1A and Table 1). When the double positive cells were isolated by cell sorting and cloned, one-third to one-half of the clones stably

Fig. 1. Identification and isolation of T cells expressing two V_a chains (10). (A) PBMCs stained with antibodies to V_a2 and V_a24. (B) A polyclonal V_a2⁺ cell line stained with antibodies to V_a2 and V_a24. (C) A polyclonal V_a4. (C) A po

expressed both V_{α} chains (Fig. 1D and Table 1). We also sorted and expanded T cells expressing $V_{\alpha}2$, $V_{\alpha}12$, or $V_{\alpha}24$ in bulk culture. Almost all cells expressed the V_{α} for which they had been originally selected, and a portion also expressed a second V_{α} (Fig. 1, B and C, and Table 1).

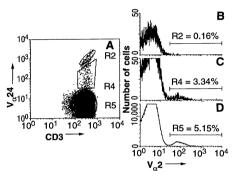
A total of 124 clones that stained positive for two antibodies to V_{α} were isolated. Fifteen of these clones, chosen at random, were analyzed for the presence of a V_{α} specific message by the polymerase chain reaction (PCR) with specific primers (11), and in all cases messages corresponding to the two V_{α} chains expected from the staining data were found. From five of these clones, the two α alleles were sequenced. All the sequences were in-frame, and the length of the N region was comparable in both alleles, which possibly reflects the activity of terminal transferase at the time of rearrangement (Table 2). These results are in agreement with the antibody staining data.

clones isolated from sorted cells from (A), (B), and (C), respectively.


Table 1. Frequency of T cells expressing two V_{α} chains. The T cells from peripheral blood of healthy donors were analyzed as described in Fig. 1. The frequency of T cells stained by one or two V_{α} antibodies is indicated. The number of doubly positive clones out of the total number of clones isolated is shown in parentheses. ND, not done.

	Frequency of T cells expressing:					
Cell source	V _a 2	V _a 24	V _a 12	V _a 2,V _a 12	$V_{\alpha}^{2}, V_{\alpha}^{2}$	
			Experiment 1			
PBMC EPA	1/33	1/100	_	_	1/3000 (3/7)	
PBMC SVA	1/27	1/131	_	-	1/10,000 (5/18)	
PBMC ALA	1/21	_	1/32	1/900 (5/10)		
PBMC PDB	1/25	-	1/20	1/1058 (ND)	_	
			Experiment 2			
α2 ALA	1/1	-	_	1/191 (24/24)	1/425 (ND)	
α2 ATR	1/1	_	_	1/375 (12/12)	1/355 (37/42)	
α2 DSH	1/1	_	_	1/531 (20/20)	1/331 (ND)	
			Experiment 3			
α24 ALA	_	1/1.1	_	-	1/4600 (5/12)	
α24 ATR	_	1/1.2	_	-	1/1620 (7/12)	
α24 DSH	-	1/1.1	_	_	1/213 (6/12)	
			Experiment 4			
α12 ALA	_	_	1/1	1/1804 (ND)	_	
α12 ATR	-	-	1/1	1/1511 (ND)	-	

SCIENCE • VOL. 262 • 15 OCTOBER 1993


To investigate whether T cells that express two V_{α} chains have two functional and independent TCRs, we used antibodies to V_{α} to induce cytotoxicity and TCR down-regulation. The killing of target cells that express Fc receptors by a T cell clone expressing two V_{α} chains could be induced by either of the cognate antibodies to V_{α} (Fig. 2). In addition, incubation of a $V_{\alpha}2^{+}V_{\alpha}24^{+}$ clone with antibody to $V_{\alpha}24$ resulted in a selective down-regulation of the cognate V_{α} (Table 3). Taken together, these results suggest that each V_{α} chain is part of an independent and functional TCR.

What is the frequency of T cells that express two V_{α} chains? If all the in-frame rearrangements result in unbiased surface expression of the corresponding α chain, approximately one-third of all T cells should express two V_{α} chains (12). The observed frequencies (Table 1) are close to this expected value. A separate estimate of this frequency can be obtained by analysis

Fig. 2. Functional assessment of TCRs in a T cell clone expressing two V_{α} chains. A $V_{\alpha}^2+V_{\alpha}^24^+$ clone was tested for its capacity to kill ⁵¹Cr-labeled P815 target cells in the presence of different concentrations of antibodies to V_{α}^2 (\Box), V_{α}^24 (Δ), or CD3 (\bullet) in a standard 5-hour assay with an effector-to-target ratio of 10 (*24*). Ab, antibody.

of the ratio of TCR V_{α} type to CD3. The stoichiometry of total TCR to CD3 is fixed (13); thus, the $V_{\alpha}24$:CD3 ratio will be higher in cells that express $V_{\alpha}24$ only, as compared to cells that express $V_{\alpha}24$ only, as second V_{α} (14). This was tested by threecolor staining of PBMCs with antibodies to $V_{\alpha}24$, $V_{\alpha}2$, and CD3. A typical distribution pattern (Fig. 3A) of the $V_{\alpha}24$:CD3 fluorescence shows that a portion of the $V_{\alpha}24^+$ cells is near a diagonal with a high $V_{\alpha}24$:CD3 ratio (compatible with the expression of $V_{\alpha}24$ only); a sizable fraction of the cells that express $V_{\alpha}24$ have a lower ratio, compatible with the expression of $V_{\alpha}24$ plus an additional, unknown V_{α} . $V_{\alpha}2$, which is not expressed by cells with the high $V_{\alpha}24$:CD3 ratio, is found among

Fig. 3. Identification of peripheral blood T cells expressing $V_{\alpha}24$ only or $V_{\alpha}24$ plus another V_{α} chain. The PBMCs were stained in three-color fluorescence with anti- $V_{\alpha}2$ (IgG2a), biotin-labeled antibody to $V_{\alpha}24$ (IgG1), and FITC-labeled antibody to CD3 (clone TR66, IgG1) (*24*), followed by goat antibody to mouse IgG2a-PE and streptavidin-allophycocyanin. (**A**) Distribution of $V_{\alpha}24^+$ versus CD3⁺ cells. Gate R2 contains cells with a high $V_{\alpha}24$:CD3 ratio; gate R4 contains cells with a lower ratio. (**B** through **D**) Frequency of $V_{\alpha}2^+$ cells in gates R2, R4, and R5, respectively.

cells with a lower $V_{\alpha}24$:CD3 ratio at a frequency that is comparable to that in whole blood (Fig. 3, B through D). Similar results have been obtained in three donors with various V_{α} combinations. These results show that (i) the V_{α} :CD3 ratio can be used to quantify cells that express two V_{α} chains and (ii) V_{α}^2 and V_{α}^2 are not overrepresented among cells carrying two V_{α} chains. These plots also clearly show that the expression of two V_{α} chains, which can be easily detected by the staining method, is uneven in the sense that the two α chains are expressed in different proportions, possibly because of differential transcription or differential pairing with the β chain (9, 12, 15).

The expression of dual receptors by $\alpha\beta$ T cells has been directly demonstrated only

Table 3. Independent down-regulation of the two TCRs in T cells expressing two V_a chains. Two T cell clones expressing V_a2 and V_a24 were incubated at 37°C with antibody to V_a24 (5 μ g/ml), with phorbol myristate acetate (PMA) (10 ng/ml) or with medium alone (control). After 8 hours, the cells were stained with an excess of antibody to V_a2, V_a24, and CD3, followed by the appropriate second-step reagents. The data represent the mean fluorescence intensity from which the background (<5) was subtracted. Numbers in parentheses indicate the percent of specific fluorescence left after down-regulation as compared to the untreated sample.

Clone	Control	Anti-V _a 24	PMA	
	Exp	periment 1		
V.2	128	127 (99)	41 (32)	
V _a 2 V _a 24	303	38 (12)	46 (15)	
CD3	430	280 (65)	123 (28)	
	Exµ	periment 2		
V_2	39	37 (95)		
V_2 V_24 CD3	75	27 (36)		
CD3	172	138 (80)		

Table 2. Sequence of TCR α from five T cell clones that express two surface V $_{\alpha}$ products.

	V_{α}	Ν	J_{α}	
		EPA 25		
V_2	TAC CTC TGT GTG GTG	CA	G ATT TAT AAC CAG	J_H.1 J_Q
V _α 2 V _α 24	TAC ATC TGT GTG GTG AG	AC	AC AGA GGC TCA AAC CCT	J _a Q
		DSH 11		
V 2	TAC CTC TGT GTG GTG A		CG TAC AAT AAC AAT	Jູ10 JູF.1
V _a 2 V _a 24	TAC ATC TGT GTG GTG AG		G AAT TCA GGA AAC ACA	J_F.1
-		ATR 6.2		
V 2	TAC CTC TGT GTG GTG AAC	CGA GCG CA	C AAC TTC AAC AAA	J_AC 24 J_AC-17
V_2 V_24	TAC ATC TGT GTG GTG AG	A GCG GCC TAT GG	T AAT GCA GGC AAC ATG	JຼັAC-17
		DSH 102		
V 2	TAC CTC TGT GTG GTG AAC	ATG GGG AAG GGA	ACC TCC TAC	J
V_2 V_12	TAC TTC TGT GCT CT	G AGT GAG GCG CTA TTG	AAC TTC AAC AAA	JຼັAC 24
		ALA 100		
V.2	TAC CTC TGT GTG GTG A	GA TTT TA	C ACC GGT AAC CAG	J_U
V_2 V_12	TAC TTC TGT GCT CT	T TTA ATG C	CT GGG GCT GGG AGT TAC	JૣU JૣૣV

SCIENCE • VOL. 262 • 15 OCTOBER 1993

for the three V_{α} products that can be identified with the available antibodies, but it is likely to reflect a general property of $\alpha\beta$ T cells (16). Thus, our findings, together with the recent report that two TCRy alleles can be expressed on the same $\gamma\delta$ T cell (17), show that the "one cell, one receptor" rule is not valid for a portion of both $\alpha\beta$ and $\gamma\delta$ T cells.

What are the implications of the dual $\alpha\beta$ TCR subset? First, it may be more frequently involved in alloreactivity because (i) it has two TCRs rather than one (although each at a lower concentration) and (ii) the nonpositively selected receptor may be more prone to see peptides bound to allogeneic MHC molecules (although admittedly self restricted antigen recognition and alloreactivity can be mediated by the same receptor) (4, 18). Second, although the presence of two TCRs on T cells is compatible with central (thymic) tolerance, it could pose a problem for peripheral tolerance when this is based on the inability of tissue cells to stimulate naïve T cells (19). Thus, once a dual receptor T cell is activated by a foreign antigen recognized by the first TCR, it may become competent to utilize the second (non-positively selected) TCR to attack the self antigen. This type of cross-reactivity would not be based on structural similarities between foreign and self antigens, but rather on the particular somatic combination of two distinct TCRs.

REFERENCES AND NOTES

- 1. F. M. Burnet, The Clonal Selection Theory of Acquired Immunity (Cambridge Univ. Press, Cambridge, 1959).
- Y. Uematsu et al., Cell 52, 831 (1988).
- P. Borgulya, H. Kishi, Y. Uematsu, H. von Boehmer, *ibid.* 69, 529 (1992); L. A. Turka *et al.*, Science 253, 778 (1991); D. Brändle, C. Müller, T. Rülicke, H. Hengartner, H. Pircher, Proc. Natl. Acad. Sci. U.S.A. 89, 9529 (1992).
- 4. M. Malissen et al., Cell 55, 49 (1988)
- M. Furutani et al., Int. Immunol. 1, 281 (1989). 6. J. L. Casanova, P. Romero, C. Widmann, P. Kourilsky, J. L. Maryanski, J. Exp. Med. 174, 1371 (1991).
- B. Boitel et al., ibid. 175, 765 (1992). 7.
- 8. D. Couez, M. Malissen, M. Buferne, V. A. Schmitt,
- B. Malissen, Int. Immunol. 3, 719 (1991).
- K. Kuida et al., ibid., p. 75. 10.
- The mouse immunoglobulin G2a (IgG2a) anti-body to human V_a2 (clone V2a) was purchased from T Cell Science (Cambridge, MA). The mouse IgG1 antibody to human Va12 (clone 6D6) was provided by M. Brenner (20). We produced a mouse IgG1 antibody to human $V_{\alpha}24$ (21). Cells were stained with either antibodies to V_{α}^2 plus $V_{\alpha}24$ or antibodies to $V_{\alpha}2$ plus $V_{\alpha}12$, followed by phycoerythrin-conjugated goat antibody to mouse IgG1 plus fluorescein isothiocyanate (FITC)-conjugated goat antibody to mouse IgG2a. In some experiments, T cells that expressed a given V_{α} were first enriched by sorting, expanded with phytohemagglutinin (PHA), interleukin-2 (IL-2), and irradiated feeder cells, and reanalyzed. Cells stained with two antibodies were sorted on a FACStar Plus (Becton Dickinson) and cloned as described (22) by limiting dilution with PHA, IL-2, and irradiated allogeneic PBMCs. 11. RNA extraction and complementary DNA (cDNA)

synthesis were performed as described (23). We amplified cDNA in 30 μl using 80 ng of one of the aniphiled cobine of the shift so in using so the of the TCR V_a-specific primers (V_a1, 5'-GGCATTAAG-GGTTTTGAGGCTGGA-3'; V_a2, 5'-CAGTGTTCC-AGAGGGAGCCATTGT-3'; V_a12, 5'-TCGTCG-GAACTCTTTTGATGAGCA-3'; or V_a24 5'-CTG-GATGCAGACACAAAGCAGAGC-3') [C. Geneveè et al., Eur. J. Immunol. 22, 1261 (1992)] plus 80 ng of the TCR C, primer (5'-TGCTCTTGAATTCCAT-AGACCTCATGTC-3') with the following profile: 15 s at 94°C, 20 s at 60°C, and 20 s at 72°C for 30 cycles in a Perkin-Elmer 480 thermal cycler. The PCR products were fractionated on a 2% agarose gel and isolated with low melting point agarose. The single PCR fragments were directly se quenced with a U.S. Biochemicals Sequenase kit as described [J.-L. Casanova et al., Nucleic Acids Res. 18, 4028 (1990)] with 0.25 pmol of template and 10 pmol of the TCR C oligonucleotide 5'-CAGACAGACTTGTCACT-3'. 12. M. Malissen et al., Immunol, Todav 13, 315 (1992).

- J. D. Ashwell and R. D. Klausner, Annu. Rev. 13. Immunol. 8, 139 (1990).
- 14. This ratio can be measured by two-color staining with antibodies to V_{α} and to CD3. All V_{α}24⁺ clones tested show a homogeneous staining with a clear correlation between the level of V_{α} 24 and CD3 and a constant ratio. Within the same experiment, this ratio has a fixed high value for the majority of the clones and a lower value for those that are known to express a second V_a chain.
- 15. T. Saito and R. N. Germain, J. Immunol. 143, 3379 (1989).
- 16. The possibility has to be considered that there could be a mechanism that favored V_2, V_12, and V_a24 for dual expression. However, this is unlikely for two reasons. First, rearrangements of both V_{α} loci occur simultaneously and independently of thymic selection (12); rearrangement is

therefore expected to be random. Thus, it is unlikely that, upon positive selection of one of the two V_{α} chains, a bias is introduced for the other unselected V_{α} chain. Second, the results shown in Fig. 3 indicate that V_{α}^2 and V_{α}^2 are not overrepresented among co-expressed V_{α} chains

- 17. F. Davodeau et al., Science 260, 1800 (1993)
- 18. J. Kaye and S. M. Hedrick, *Nature* **336**, 580 (1988). 19. P. S. Ohashi *et al.*, *Cell* **65**, 305 (1991); M. B.
 - Oldstone, M. Nerenberg, P. Southern, J. Price, H. Lewicki, ibid., p. 319.
 - H. DerSimonian, H. Band, M. B. Brenner, J. Exp. 20. Med. 174, 639 (1991).
 - 21. A monoclonal antibody (C15, IgG1) was produced from mice immunized with a T cell clone that expressed a V_a24, J_aQ, V_B11 TCR (23). T cells stained by C15 were sorted from peripheral blood and cloned, and the structure of their TCRs was determined by sequencing. All the clones recognized by the C15 antibody express V_{α} 24, which can be associated with different J_a segments as well as with different V_{β} chains. Antibody titration experiments indicate that the affinity of C15 is not influenced by J_{α} or V_{β} .
 - A. Lanzavecchia, Nature 314, 537 (1985)
- 23. P. Dellabona et al., J. Exp. Med. 177, 1763 (1993).
 - 24. A. Lanzavecchia and D. Scheidegger, Eur. J. Immunol. 17, 105 (1987).
 - 25. We thank G. De Libero, K. Hannestad, K. Karjalainen, C. Steinberg, and H. von Boehmer for critical reading and comments. M. Brenner kindly provided the human 6D6 antibody. This work is in partial fulfillment of the doctorate in molecular and cellular biology and pathology, University of Padova (E.P.). The Basel Institute for Immunology was founded and is supported by F. Hoffmann-La Roche, Basel, Switzerland.

1 June 1993; accepted 24 August 1993

Altered Fluid Transport Across Airway Epithelium in Cystic Fibrosis

Canwen Jiang, Walter E. Finkbeiner, Jonathan H. Widdicombe, Paul B. McCray Jr., Sheldon S. Miller*

In cystic fibrosis (CF), absence or dysfunction of a phosphorylation-regulated chloride channel [CF transmembrane conductance regulator (CFTR)] leads to the loss or reduction of chloride secretion into the airways. Active sodium absorption is also increased in CF, and both of these ion transport changes could alter fluid transport across the airways. Under baseline conditions, cultured human airway epithelia from normal individuals absorbed fluid, and this absorption was increased in epithelia from patients with CF. In normal and CF epithelial cultures fluid absorption was inhibited by amiloride. Adenosine 3',5'-monophosphate stimulated fluid secretion in normal epithelial cultures but not in cultures from individuals with CF. In contrast, fluid secretion induced by nucleotide triphosphates (uridine triphosphate or adenosine triphosphate) was unaltered in cultures of epithelia from patients with CF, suggesting an approach to the treatment of CF.

 ${f T}$ he surface of the airway epithelium is covered by a 5- μ m layer of fluid (sol) and a blanket of mucus (gel) that are produced by various surface and submucosal gland cells. Cilia on the cells' apical membranes beat within the sol and contact the underside of the mucus blanket, thereby clearing it together with entrapped particulate matter from the lungs. It is believed that in CF this mucociliary clearance is impaired because alterations in CFTR lead to Cl⁻ impermeability of the luminal membrane, thereby reducing fluid secretion and dehydrating

SCIENCE • VOL. 262 • 15 OCTOBER 1993

the sol and gel layers (1, 2). In human airways, Na⁺ absorption is increased in patients with CF (3-5), and this may also dehydrate the airway surface and contribute to the pathology.

To directly test whether airway fluid transport is altered in CF, we have made continuous measurements of active ionlinked fluid movement across cultured human airway epithelia. We used primary cultures of nasal (HNE) and tracheal (HTE) epithelia, which have ion transport properties that closely resemble those of