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In his book, Recherches sur la Probabilité des
Jugements en Matiére Criminelle et en Matiére
Civile, published in 1837, the French math-
ematician Siméon-Denis Poisson (1781-
1840) proved the following limit theorem:
Consider n independent events, each of
which occurs with probability p. If p de-
creases to zero as n increases to infinity in
such a way that np approaches a fixed posi-
tive number A, then for any nonnegative
integer k, the probability that k events will
occur approaches the number e*A¥/k!. The
limiting distribution, which is given by P(X
— k) = e*\¥k!, where k = 0,1,2,..., is called
the Poisson distribution with mean A. In
the 150 years since Poisson’s work, this dis-
tribution has been applied in an enormous
range of applications in both the physical
and the life sciences.

Despite its utility, there are applications
in which Poisson’s approximation for inde-
pendent events is too constraining. In re-
cent years, a method dating back to Stein
(1) and Chen (2) has been developed for
the purpose of generalizing the Poisson
limit theorem to dependent events under
very general conditions. The method also
provides a means for bounding the discrep-
ancy between the distribution of the num-
ber of occurrences of the events and the
Poisson distribution. This generalization
toward dependence has proved to be very
fruitful as a wide range of important and in-
teresting problems may be phrased in terms
of occurrences of possibly dependent
events. These problems arise from such
fields as spatial statistics, combinatorial
probability, random graphs, extreme value
theory, and molecular biology.

Bounding the discrepancy between two
distributions is stronger than proving a
limit theorem. Not only can a limit theo-
rem be deduced this way, but the bound
also provides an estimate of the error in ap-
proximating one distribution by the other.
In the context of Poisson approximation,
the discrepancy is given by

3 (k) — e~ A%
k=0

where b(k) is the probability of occurrence
of k events. This discrepancy is twice the
maximum possible error in the approxima-
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tion and is called the total variation distance.

The method of Poisson approximation in-
volves the solution of a difference equation
and works well for dependent events. It is
easy to apply and the bounds obtained de-
pend only on the first and second moments.

There are two ways to obtain the
bounds: The local approach, which was
first used by Chen (2) and which is very
similar in spirit to the method of normal
approximation of Stein (1), and the cou-
pling approach of Barbour, Holst, and
Janson (3). In the local approach, it is as-
sumed that each event may be dependent
on a few other events but is independent or
almost independent of all the others. The
most general upper bound on the total
variation distance that has been obtained
by this approach is due to Arratia, Gold-
stein, and Gordon (4, 5).

The coupling approach deals with de-
pendence that is symmetric. To understand
this kind of dependence,
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was founded by Erdés and Rényi over 30
years ago. It is the study of graphs by proba-
bilistic methods. The initial objective was
to prove the existence of graphs with cer-
tain properties. Many results have now
been found to have applications in com-
puter algorithms. There is also a connec-
tion between random graphs and percola-
tion theory, a mathematical theory of disor-
dered media. The method of Poisson ap-
proximation has become an important tool
in random graphs. A typical application
concerns counting the number of particular
configurations of vertices and edges in a
random graph.

As an example, consider a complete graph
K, with n vertices, that is, a graph in which
every two vertices are joined by an edge. If
we delete the edges such that each edge has
a probability 1 — p of removal (indepen-
dently of the other edges), we then get a
random graph K, ,. Now, we want to know
how many complete graphs with r vertices
there are in K, ,, where r is a fixed integer
less than n. Associate an event with each
complete graph with r vertices in K. If the
complete graph is in K, ,, then we say the
event occurs. The number of events that
occur is then the number of complete
graphs with r vertices that are in K, ,. By
the coupling approach, it can be proved
that the number of com-

consider the classical oc-
cupancy problem in
which r balls are thrown
into n boxes such that
each ball falls into the
boxes with respective
probabilities py,... ,p,. As-
sociate with each box an
event. If the ith box is
empty, we say the ith
event occurs. The num-
ber of events that occur
is then the number of
empty boxes. The rela-
tions between the events

plete graphs with r verti-
ces tbat lie in K, ha§ ap-
proximately the Poisson
distribution with mean

A= n p[;J
r

provided that pn¥*-1 is
large and pn?™*1 is small.
The error in this case is at
most a fixed constant
multiple of

T]—l
nr—Zp 2

which is small. A variety

are symmetric in that the
nature of dependence be-
tween every two events is
the same. The symmetry
is even more apparent if we assume that all
the p/s are equal. The coupling approach
was systematically developed by Barbour,
Holst, and Janson (3), where general upper
bounds on the total variation distance are
also obtained by this approach. The works
of both groups (3-5) contain many vivid
examples of application of this method of
Poisson approximation in a wide range of
fields. I give two examples for illustration.
The first example concerns random
graphs. A graph is a mathematical object,
represented by a set of vertices (nodes),
some or all of which are joined by lines
called edges. The theory of random graphs
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Siméon-Denis Poisson, French math-
ematician. [Bettmann Photos]

of examples of applica-
tion of the method of
Poisson approximation to
random graphs are pre-
sented in Barbour, Holst, and Janson (3).

The second example concerns DNA se-
quence matching. A strand of DNA can be
represented as a long string of letters from
the alphabet {A,C,G,T}. When two DNA
sequences show strong similarity in a re-
gion, this may have biological significance.
It is therefore relevant to determine
whether the similarity could be attributable
to chance alone. Smith and Waterman (6)
proposed the following method of scoring
for comparing two DNA sequences. For
each pair of segments I and ] taken from
two given sequences X = Xj, X3,.--, Xy, and y
= Y1, Yas-+-» Yny the letters in the two seg
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ments are aligned in all possible ways. For
each alignment, a score is obtained by
counting +1 for a match, —u for a mis-
match, and -8 for a letter inserted or de-
leted (a gap).

For example, AGCACT and AGGT

can be aligned as

AGCACT
AG-G-T

to receive score S = 3 —Uu~ 28. They can
also be aligned as

AGCACT
AGGT--

to receive score S = 2 — 21 — 28. The score
M,..(x,3), which is defined to be the maxi-
mum of all the scores obtained for all pos-
sible pairs of segments I and J, is then cal-
culated by an algorithm whose computing
time is proportional to the product of m
and n.

To calculate the probability of those
large values of M, ,(x,y) for which the simi-
larity is significant, one has to know, at
least approximately, the distribution of
M,,.(x,y) under the assumption that x and
y are unrelated. That is, the letters xi,...,
Xms Y1b--- ,Yn are independently chosen with
the same distribution from the alphabet
{A,C,G,T}. Karlin and Altschul (7) ob-
tained approximations for the probabilities
of large values of M,,,(x,y) for the case
8 = oo (that is, without gaps), assuming the
expected score of two letters to be negative.
Arratia, Gordon, and Waterman (8) con-
sidered the score M,,,(t), which is the
maximum of the scores obtained by consid-
ering only those pairs of segments I and J of
a given length t, for the case W = 0. They
established approximations for M,,,(t) un-
der certain mild conditions by the method
of Poisson approximation.

The set of all values of the parameters
(1,8) can be divided into two regions, S,
and S,, such that for m = n, the growth of
M,..(x,y) is proportional to n in S; and the
growth of M, ,(x,y) is proportional to log n
in S;. The cases considered by Karlin and
Altschul (7) and Arratia, Gordon, and
Waterman (8) are in the logarithmic re-
gion. The work of the latter (8) has pro-
vided a basis for Waterman and Vingron
(9) to use the Poisson clumping heuristic of
Aldous (10) to calculate the probabilities
of large values of M,,,(x,y) in the entire
logarithmic region.

Let us see how the method of Poisson
approximation is applied in the problem of
Arratia, Gordon, and Waterman (8). Be-
cause W = 0, the score for each pair of the
segments | and J of a given length ¢ is just
the number of matches. Let s be a given
positive integer. Associate an event with
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each pair of I and J. If the score is at least s
for a particular pair of I and J, we say that
the associated event occurs. The number of
events that occur, say, U is the number of
those scores which are at least s. Therefore,
PIM,,.(¢) <s] = P(U =0).

We would have been done if the distri-
bution of U was approximately Poisson with
mean, say, A". For then, we would have had
PIM,.(t) 2s] =1 -P(U =0)=1 - ™.
However, this is not the case. The events
associated with the I’s and the J’s occur in
clumps. By the Poisson clumping heuristic
of Aldous (10), it is the number of clumps
that is expected to have approximately the
Poisson distribution. So we declump and
modify the events so as to obtain events
which are associated with the clumps. Let
W denote the number of clumps that occur.
The method of Poisson approximation is
then applied with the local approach. The
result is that P[M,, ,(t) =s]=1 - P(W = 0)
=1 — ¢* where A is the mean of the ap-
proximating Poisson distribution.

There are many situations in which oc-
currences of events happen in clumps. The
book by Aldous (10) provides many such
examples. In these situations, the appropri-
ate approximating distribution is the com-
pound Poisson distribution. One of the new
developments relating to the method of
Poisson approximation is the extension of
the method to compound Poisson approxi-
mation by Barbour, Chen, and Loh (I1).
This work extended the associated differ-
ence equation to an integral equation. Al-

though Arratia, Goldstein, and Gordon (5)

also considered compound Poisson approxi-
mation, the approach of Barbour, Chen,
and Loh (11) is different and holds promise
for producing better results. Much work is
also being done on multivariate or process
approximation, which was initiated by
Barbour (12) and Arratia, Goldstein, and
Gordon (4) using different approaches. Fi-
nally, for approximation for relative errors,
which is very useful when the probabilities
are small, a new approach was introduced

in Chen and Choi (13).

References and Notes

1. C. M. Stein, in Proceedings of the Sixth Berkeley
Symposium on Mathematical Statistics, and
Probability (Univ. of California Press, Berkeley,
1972), vol. 2, pp. 583-602.

2. L. H.Y.Chen, Ann. Probab. 3, 534 (1975).

3. A. D. Barbour, L. Holst, S. Janson, Poisson Ap-
proximation (Clarendon, Oxford, 1992).

4. R. Arratia, L. Goldstein, L. Gordon, Ann. Probab.

17, 9 (1989).

5. ____ Stat. Sci. 3, 403 (1990).

6. T.F. Smith and M. S. Waterman, J. Mol. Biol. 147,
195 (1981).

7. S. Karlinand S. F. Altschul, Proc. Natl. Acad. Sci.
U.S.A. 87, 2264 (1990).
8 R. Arratia, L. Gordon, M. S. Waterman, Ann. Stat.
18, 539 (1990).
9. M. S. Waterman and M. Vingron, in preparation.
10. D. Aldous, Probability Approximations via the
Poisson Clumping Heuristic, vol. 77 of Applied
Mathematical Sciences (Springer, New York,
1989)
11. A D. Barbour, L. H. Y. Chen, W.-L. Loh, Ann.
Probab. 20, 1843 (1992).
12. A.D. Barbour, J. Appl. Probab. 25(a), 175 (1988).
13. L. H. Y. Chen and K. P. Choi, Ann. Probab. 20,
1867 (1992).
14. | thank M. Waterman for helpful discussions on
the molecular biology application and Z. Chen, C.
T. Chong, and Y. K. Leong for their helpful com-
ments on the preliminary drafts of this Perspective.

Conformational Flexibility of Enzyme
Active Sites

Chen-Lu Tsou

The activity of enzymes is strongly depen-
dent on their conformational integrity. Our
laboratory has been interested in the pre-
cise relationship between enzyme activity
changes and protein unfolding. The obser-
vation that, under denaturing conditions,
loss of enzyme activity can precede marked
changes in protein conformation led us to
hypothesize that enzyme active sites may
display more conformational flexibility than
the enzyme molecules as a whole (I, 2).
Here I discuss recent results that support
this concept.
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Exposure of the enzyme creatine kinase
to denaturants such as guanidine hydro-
chloride (GuHCI) and urea results in an
initial phase of rapid inactivation; this in-
activation can be conveniently measured
by following the substrate reaction with a
stopped-flow apparatus (3). In parallel, con-
formational changes induced by the dena-
turants can be monitored by conventional
methods that detect changes in intrinsi¢
fluorescence, absorbance in the ultraviolet,
circular dichroism, or exposure of buried
thiol groups. Comparison of conformation
and activity changes of creatine kinase dur-
ing denaturation indicates that enzyme in-
activation occurs at a much lower concen-
tration of denaturant than is required to






